
NI-488.2™

NI-488.2 User Manual
for Windows
NI-488.2 User Manual for Windows

August 2000 Edition
Part Number 321819E-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,
China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

© Copyright 1998, 2000 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult
National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of
or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL
INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments
must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks
HS488™, National Instruments™, NI-488.2™, ni.com™, and TNT4882™C are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL
OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL
COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE
EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS
CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL
POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE
FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION,
INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR
FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC
SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF
THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH)
SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM
FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO
BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS
FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER
MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND
SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation v NI-488.2 User Manual for Windows

Contents

About This Manual
Using the NI-488.2 Documentation...xi

Accessing the NI-488.2 Online Help...xi
Conventions ...xii
Related Documentation..xiii

Chapter 1
Introduction

Setting up and Configuring Your System..1-1
Controlling More Than One Interface...1-2
Configuration Requirements ...1-2

Chapter 2
Measurement & Automation Explorer

Overview..2-1
Starting Measurement & Automation Explorer...2-2
Getting Started with NI-488.2 ...2-2
Troubleshoot NI-488.2 Problems ..2-4
Add a New GPIB Interface ..2-4
Delete a GPIB Interface ...2-5
Scan for GPIB Instruments ..2-5

Instruments Not Found ..2-6
Instruments Enumeration Failed..2-6

Communicate with Your Instrument ...2-6
Basic Communication (Query/Write/Read) ..2-7
Advanced Communication ..2-8

View NI-488.2 Software Version ..2-8
Monitor, Record, and Display NI-488.2 Calls...2-8
View or Change GPIB Interface Settings ..2-9

Windows Me/98/95 ...2-9
Windows 2000/NT ..2-10

View GPIB Instrument Information ..2-11
Change GPIB Device Templates ...2-12

Windows Me/98/95 ...2-12
Windows 2000/NT ..2-12

Enable/Disable NI-488.2 DOS Support...2-13
Windows Me/98/95 ...2-13
Windows 2000/NT ..2-14

Contents

NI-488.2 User Manual for Windows vi ni.com

Access Additional Help and Resources... 2-14
NI-488.2 Online Help ... 2-14
National Instruments GPIB Web Site ... 2-14

View or Change GPIB-ENET Network Settings (Windows Me/98/95 Only).............. 2-15
Assign IP Address ... 2-15
Configure Advanced IP Settings... 2-15
Update GPIB-ENET Firmware ... 2-16

View or Change GPIB-ENET/100 Network Settings (Windows Me/98/95 Only)....... 2-16
Device Configuration.. 2-16
Update GPIB-ENET/100 Firmware.. 2-17

Chapter 3
Developing Your NI-488.2 Application

Simple Instrument Control .. 3-1
Interactive Instrument Control .. 3-2
Choosing Your Programming Methodology ... 3-3

Choosing a Method to Access the NI-488.2 Driver.. 3-3
NI-488.2 Language Interfaces .. 3-3
Direct Entry Access .. 3-3

Choosing How to Use the NI-488.2 API .. 3-4
Communicating with a Single GPIB Device 3-4
Using Multiple Interfaces and/or Multiple Devices 3-5

Checking Status with Global Variables... 3-5
Status Word (ibsta).. 3-5
Error Variable (iberr) .. 3-7
Count Variables (ibcnt and ibcntl) .. 3-7

Using Interactive Control to Communicate with Devices... 3-7
Programming Models .. 3-8

Applications That Communicate with a Single GPIB Device 3-8
Items to Include .. 3-8
General Program Steps and Examples.. 3-8

Applications That Use Multiple Interfaces or Communicate with
Multiple GPIB Devices .. 3-10

Items to Include .. 3-10
General Program Steps and Examples.. 3-10

Language-Specific Programming Instructions .. 3-12
Microsoft Visual C/C++ (Version 2.0 or Later) ... 3-12
Borland C/C++ (Version 4.0 or Later).. 3-13
Visual Basic (Version 4.0 or Later) .. 3-13
Direct Entry with C ... 3-13

gpib-32.dll Exports ... 3-13
Directly Accessing the gpib-32.dll Exports...................................... 3-14

Contents

© National Instruments Corporation vii NI-488.2 User Manual for Windows

Running Existing NI-488.2 Applications ..3-17
Running Existing Win32 and Win16 NI-488.2 Applications3-17
Running Existing DOS NI-488.2 Applications Under Windows Me/98/95 ...3-17
Running Existing DOS NI-488.2 Applications under Windows 2000/NT3-18

Chapter 4
Debugging Your Application

NI Spy ..4-1
Global Status Variables ...4-2
Existing Applications...4-3
NI-488.2 Error Codes ..4-3
Configuration Errors ..4-3
Timing Errors...4-4
Communication Errors...4-5

Repeat Addressing...4-5
Termination Method..4-5

Other Errors ...4-5

Chapter 5
NI Spy Utility

Overview..5-1
Starting NI Spy ..5-1
Using the NI Spy Online Help ...5-2
Locating Errors with NI Spy..5-2
Viewing Properties for Recorded Calls ...5-2
Exiting NI Spy ...5-3
Performance Considerations ..5-3

Chapter 6
Interactive Control Utility

Overview..6-1
Getting Started with Interactive Control..6-1
Interactive Control Syntax ...6-4

Number Syntax..6-4
String Syntax ...6-4
Address Syntax..6-5

Interactive Control Commands..6-5
Status Word..6-10
Error Information ...6-10
Count Information..6-11

Contents

NI-488.2 User Manual for Windows viii ni.com

Chapter 7
NI-488.2 Programming Techniques

Termination of Data Transfers .. 7-1
High-Speed Data Transfers (HS488)... 7-2

Enabling HS488 .. 7-2
System Configuration Effects on HS488 .. 7-3

Waiting for GPIB Conditions.. 7-4
Asynchronous Event Notification in Win32 NI-488.2 Applications 7-4

Calling the ibnotify Function .. 7-4
ibnotify Programming Example.. 7-5

Writing Multithreaded Win32 NI-488.2 Applications .. 7-9
Device-Level Calls and Bus Management .. 7-11
Talker/Listener Applications ... 7-11
Serial Polling ... 7-12

Service Requests from IEEE 488 Devices .. 7-12
Service Requests from IEEE 488.2 Devices ... 7-12
Automatic Serial Polling... 7-13

Stuck SRQ State ... 7-13
Autopolling and Interrupts.. 7-14

SRQ and Serial Polling with Device-Level Traditional NI-488.2 Calls......... 7-14
SRQ and Serial Polling with Multi-Device NI-488.2 Calls............................ 7-15

Example 1: Using FindRQS ... 7-16
Example 2: Using AllSpoll... 7-16

Parallel Polling .. 7-17
Implementing a Parallel Poll... 7-17

Parallel Polling with Traditional NI-488.2 Calls.............................. 7-17
Parallel Polling with Multi-Device NI-488.2 Calls 7-19

Appendix A
GPIB Basics

Appendix B
Status Word Conditions

Appendix C
Error Codes and Solutions

Appendix D
Windows Me/98/95: Troubleshooting and Common Questions

Contents

© National Instruments Corporation ix NI-488.2 User Manual for Windows

Appendix E
Windows 2000/NT: Common Questions

Appendix F
Technical Support Resources

Glossary

Index

Figures
Figure 1-1. Linear and Star System Configuration ..1-1
Figure 1-2. Example of Multiboard System Configuration1-2

Figure 2-1. Measurement & Automation Explorer ..2-2
Figure 2-2. Viewing Documentation on Your CD...2-3
Figure 2-3. NI-488.2 Troubleshooting Wizard ..2-4
Figure 2-4. NI-488.2 Communicator ...2-7
Figure 2-5. NI-488.2 Calls Recorded by NI Spy ...2-9
Figure 2-6. Properties Dialog Box in Windows Me/98/952-10
Figure 2-7. GPIB Configuration Utility in Windows NT ..2-11

Figure 3-1. NI-488.2 Communicator ...3-2

Figure 4-1. NI-488.2 Calls Recorded by NI Spy ...4-2

Figure 5-1. NI-488.2 Calls Recorded by NI Spy ...5-2

Figure 6-1. Instrument Address in Measurement & Automation Explorer6-2

Figure A-1. GPIB Address Bits ..A-2

Tables
Table 3-1. Status Word Layout...3-6

Table 6-1. Syntax for Device-Level Traditional NI-488.2 Calls
in Interactive Control...6-5

Table 6-2. Syntax for Board-Level Traditional NI-488.2 Calls
in Interactive Control...6-7

Table 6-3. Syntax for Multi-Device NI-488.2 Calls in Interactive Control6-8

Contents

NI-488.2 User Manual for Windows x ni.com

Table 6-4. Auxiliary Functions in Interactive Control ... 6-9

Table A-1. GPIB Handshake Lines... A-3
Table A-2. GPIB Interface Management Lines .. A-3

Table B-1. Status Word Layout .. B-1

Table C-1. GPIB Error Codes ... C-1

Table D-1. Device Manager Status Codes .. D-3

© National Instruments Corporation xi NI-488.2 User Manual for Windows

About This Manual

This manual describes the features and functions of the NI-488.2 software
for Windows. You can use the NI-488.2 software for Windows with
Windows 95, Windows 98, Windows Me, Windows NT version 4.0, or
Windows 2000. This manual assumes that you are already familiar with
Windows.

Using the NI-488.2 Documentation
The following NI-488.2 documentation is available on your NI-488.2 for
Windows CD:

• The Getting Started card briefly describes how to install the NI-488.2
software and your GPIB hardware.

• This manual, NI-488.2 User Manual for Windows, describes the
features and functions of the NI-488.2 software for Windows.

• The NI-488.2 Function Reference Manual for Windows describes the
NI-488.2 API.

• The GPIB Hardware Guide contains detailed instructions on how to
install and configure your GPIB hardware. This guide also includes
hardware and software specifications and compliance information.

To view these documents online, insert your NI-488.2 for Windows CD.
When the NI-488.2 Software for Windows screen appears, select the
View Documentation option. The View Documentation Wizard helps you
find the documentation that you want to view. You can also view these
documents at ni.com/manuals/.

Accessing the NI-488.2 Online Help
The NI-488.2 for Windows Online Help addresses questions you might
have about NI-488.2, includes troubleshooting information, and describes
the NI-488.2 API. You can access the NI-488.2 online help as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB.

2. Select Help»Help Topics»NI-488.2.

About This Manual

NI-488.2 User Manual for Windows xii ni.com

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

IEEE 488 and IEEE 488 and IEEE 488.2 refer to the ANSI/IEEE Standard 488.1-1987
IEEE 488.2 and the ANSI/IEEE Standard 488.2-1992, respectively, which define the

GPIB.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

About This Manual

© National Instruments Corporation xiii NI-488.2 User Manual for Windows

Related Documentation
The following documents contain information that you may find helpful as
you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface
for Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,
Protocols, and Common Commands

© National Instruments Corporation 1-1 NI-488.2 User Manual for Windows

1
Introduction

This chapter describes how to set up your GPIB system.

Setting up and Configuring Your System
Devices are usually connected with a cable assembly consisting of a
shielded 24-conductor cable with both a plug and receptacle connector at
each end. With this design, you can link devices in a linear configuration,
a star configuration, or a combination of the two configurations. Figure 1-1
shows the linear and star configurations.

Figure 1-1. Linear and Star System Configuration

Device A

Device B

Device C

Device DDevice A

Device CDevice B

a. Linear Configuration b. Star Configuration

Chapter 1 Introduction

NI-488.2 User Manual for Windows 1-2 ni.com

Controlling More Than One Interface
Figure 1-2 shows an example of a multiboard system configuration. gpib0
is the access interface for the voltmeter, and gpib1 is the access interface
for the plotter and printer. The control functions of the devices
automatically access their respective interfaces.

Figure 1-2. Example of Multiboard System Configuration

Configuration Requirements
To achieve the high data transfer rate that the GPIB was designed for,
you must limit the number of devices on the bus and the physical distance
between devices. The following restrictions are typical:

• A maximum separation of 4 m between any two devices and an
average separation of 2 m over the entire bus.

• A maximum total cable length of 20 m.

• A maximum of 15 devices connected to each bus, with at least
two-thirds powered on.

One
GPIB

Another
GPIB

Digital
Voltometer

Plotter

Printer

gpib0

gpib1

Chapter 1 Introduction

© National Instruments Corporation 1-3 NI-488.2 User Manual for Windows

For high-speed operation, the following restrictions apply:

• All devices in the system must be powered on.

• Cable lengths must be as short as possible with up to a maximum of
15 m of cable for each system.

• There must be at least one equivalent device load per meter of cable.

If you want to exceed these limitations, you can use a bus extender to
increase the cable length or a bus expander to increase the number of device
loads. You can order bus extenders and expanders from National
Instruments.

© National Instruments Corporation 2-1 NI-488.2 User Manual for Windows

2
Measurement & Automation
Explorer

This chapter describes Measurement & Automation Explorer,
an interactive utility you can use with the NI-488.2 software.

To start Measurement & Automation Explorer, select Start»
Programs»National Instruments»NI-488.2»Explore GPIB.

Overview
You can perform the following GPIB-related tasks in Measurement &
Automation Explorer:

• Establish basic communication with your GPIB instruments.

• Scan for instruments connected to your GPIB interface.

• Launch the NI-488.2 Getting Started Wizard to get started with
GPIB instrument communication.

• Launch the NI-488.2 Troubleshooting Wizard to troubleshoot GPIB
and NI-488.2 problems.

• Launch NI Spy to monitor NI-488.2 or VISA API calls to GPIB
interfaces.

• View information about your GPIB hardware and NI-488.2 software.

• Reconfigure the GPIB interface settings.

• Locate additional help resources for GPIB and NI-488.2.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-2 ni.com

Starting Measurement & Automation Explorer
To start Measurement & Automation Explorer, select Start»
Programs»National Instruments»NI-488.2»Explore GPIB. Figure 2-1
shows Measurement & Automation Explorer.

Figure 2-1. Measurement & Automation Explorer

Getting Started with NI-488.2
To get started with GPIB instrument communication using Measurement &
Automation Explorer, complete the following steps:

1. Refer to your Getting Started card and install the NI-488.2 software
and your GPIB hardware.

If you do not have a Getting Started card, complete the following steps
to view your getting started documentation:

a. Insert the NI-488.2 for Windows CD.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-3 NI-488.2 User Manual for Windows

b. When the NI-488.2 Software for Windows screen appears, select
the View Documentation option, as shown in Figure 2-2.

Figure 2-2. Viewing Documentation on Your CD

The View Documentation Wizard helps you find the
documentation that you want to view.

2. Use the NI-488.2 Getting Started Wizard to verify the installation and
establish basic communication with your GPIB instruments.

Note After you install the NI-488.2 software and restart your system, the NI-488.2
Getting Started Wizard runs automatically. To start it within Measurement & Automation
Explorer, select Help»Getting Started»NI-488.2 Getting Started Wizard.

After you install the NI-488.2 software and your GPIB hardware, you can
run an existing NI-488.2 application or develop a new NI-488.2
application.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-4 ni.com

Troubleshoot NI-488.2 Problems
To troubleshoot NI-488.2 problems, run the NI-488.2 Troubleshooting
Wizard, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Select Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

The Troubleshooting Wizard tests your GPIB interface and displays
the results, as shown in Figure 2-3.

Figure 2-3. NI-488.2 Troubleshooting Wizard

To view online help for the Troubleshooting Wizard, click on the Help
button.

Add a New GPIB Interface
To add a new GPIB interface to your system, complete the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Right-click on the Devices and Interfaces folder and select
Create New….

3. In the Create New… dialog window, select the GPIB Interface item
and click Finish.

If you are using Windows 2000/Me/98/95, the Add GPIB Hardware
Wizard appears. If you are using Windows NT, the NI-488.2
Configuration utility appears.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-5 NI-488.2 User Manual for Windows

4. Use either the Add GPIB Hardware Wizard or the NI-488.2
Configuration utility to add your interface.

Delete a GPIB Interface
Before you physically remove a GPIB interface from your system,
you must remove the hardware information, as follows:

Note If your interface is a PCMCIA-GPIB, click on the PC Card icon on the taskbar to
stop the PC Card. When you stop the PC Card, the system removes the hardware
information from the Device Manager.

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select Delete Interface from
the drop-down menu that appears.

4. When prompted, click on the Yes button to confirm the removal of
your interface.

Scan for GPIB Instruments
To scan for instruments connected to your GPIB interface or to add a new
instrument to your system, complete the following steps:

1. Make sure that your instrument is powered on and connected to your
GPIB interface.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Right-click on your GPIB interface and select Scan for Instruments
from the drop-down menu that appears.

Measurement & Automation Explorer displays the connected
instruments in the right window pane.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-6 ni.com

Instruments Not Found
If the Instruments not Found message appears in the right window
pane, Measurement & Automation Explorer did not find any instruments.
To solve this problem, make sure that your GPIB instruments are powered
on and properly connected to the GPIB interface with a GPIB cable. Then,
scan for instruments again, as described in the previous section, Scan for
GPIB Instruments.

Instruments Enumeration Failed
If the Instruments Enumeration Failed message appears in the right
window pane, Measurement & Automation Explorer found too many
Listeners on the GPIB. To solve this problem, refer to the following
possible solutions:

• If you have a running GPIB Analyzer with the GPIB handshake option
enabled, disable the GPIB handshake option in the GPIB Analyzer.

• If you have a GPIB extender in your system, Measurement &
Automation Explorer cannot detect any instruments connected to
your GPIB interface. Instead, you can verify communication with
your instruments using the Interactive Control utility. To do so,
select Tools»NI-488.2»Interactive Control. For more
information about verifying instrument communication, type help
"Interactive Control:getting started" at the Interactive
Control command prompt.

Communicate with Your Instrument
To establish basic or advanced communication with your instruments,
refer to the following sections.

For more information about instrument communication and a list of the
commands that your instrument understands, refer to the documentation
that came with your GPIB instrument. Most instruments respond to the
*IDN? command by returning an identification string.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-7 NI-488.2 User Manual for Windows

Basic Communication (Query/Write/Read)
To establish basic communication with your instrument, use the NI-488.2
Communicator, as follows:

1. If you have not already done so, scan for connected instruments as
described in the previous section, Scan for GPIB Instruments.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Select your GPIB interface.

Measurement & Automation Explorer displays the connected
instruments in the right window pane.

5. Right-click on your GPIB instrument and select Communicate with
Instrument from the drop-down menu that appears.

The NI-488.2 Communicator dialog box appears, as shown in
Figure 2-4.

Figure 2-4. NI-488.2 Communicator

6. Type a command in the Send String field and do one of the following:

• To write a command to the instrument then read a response back,
click on the Query button.

• To write a command to the instrument, click on the Write button.

• To read a response from the instrument, click on the Read button.

To view sample C/C++ code that performs a simple query of a GPIB
instrument, click on the Show Sample button.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-8 ni.com

Advanced Communication
For advanced interactive communication with GPIB instruments, use the
Interactive Control utility, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select Interactive Control
from the drop-down menu that appears.

4. At the command prompt, type NI-488.2 API calls to communicate
interactively with the your instrument. For example, you might use
ibdev, ibclr, ibwrt, ibrd, and ibonl.

To view the online help for Interactive Control, type help at the Interactive
Control command prompt.

View NI-488.2 Software Version
To view the NI-488.2 software version, complete the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Software directory by clicking on the + next to the folder.

3. Click on NI-488.2 Software.

Measurement & Automation Explorer displays the version number of
the NI-488.2 software in the right window pane.

Monitor, Record, and Display NI-488.2 Calls
To monitor NI-488.2 calls, use NI Spy, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select NI Spy from the
drop-down menu that appears.

4. On the NI Spy toolbar, click on the blue arrow button to start a capture.

5. Start the NI-488.2 application that you want to monitor.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-9 NI-488.2 User Manual for Windows

NI Spy records and displays all NI-488.2 calls, as shown in Figure 2-5.

Figure 2-5. NI-488.2 Calls Recorded by NI Spy

For more information about using NI Spy, select Help»Help Topics in
NI Spy or refer to Chapter 5, NI Spy Utility.

View or Change GPIB Interface Settings
To view or change the settings of your GPIB interface, refer to one of the
following sections.

Windows Me/98/95
To view or change your interface settings in Windows Me/98/95, complete
the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select Properties from the
drop-down menu that appears.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-10 ni.com

The Properties dialog box appears. Figure 2-6 shows the Properties
dialog box for an AT-GPIB/TNT (Plug and Play) interface.

Figure 2-6. Properties Dialog Box in Windows Me/98/95

If you need more information about a field in the Properties dialog
box, click on the ? button in the upper-right corner of the dialog box,
then click on the field.

4. (Optional) Change the settings for your interface.

Windows 2000/NT
To view or change GPIB interface information, complete the following
steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select Properties from the
drop-down menu that appears.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-11 NI-488.2 User Manual for Windows

The GPIB Configuration dialog box appears. Figure 2-7 shows the
GPIB Configuration dialog box for an AT-GPIB/TNT (Plug and
Play) interface in Windows NT.

Figure 2-7. GPIB Configuration Utility in Windows NT

4. Select your GPIB Board and click on the Configure button.

5. (Optional) Change the settings for your interface.

For more information about changing the settings for your interface, click
on the Help button.

View GPIB Instrument Information
To view information about your GPIB instruments, complete the following
steps:

1. If you have not already done so, scan for connected instruments as
described in the Scan for GPIB Instruments section earlier in this
chapter.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Select your GPIB interface.

Measurement & Automation Explorer displays the connected
instruments in the right window pane.

5. Double-click on the instrument displayed in the right window pane.

Measurement & Automation Explorer lists all the attributes for the
instrument, such as the primary address, the secondary address (if
applicable), the instrument’s response to the identification query
(*IDN?), and the GPIB interface number to which the device is
connected.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-12 ni.com

Change GPIB Device Templates
For older NI-488.2 applications, you might need to modify one of the
device templates to find a given GPIB instrument by name, for example,
ibfind("fluke45"). Older applications still use ibfind instead of the
preferred ibdev to obtain a device handle. In new applications, avoid using
ibfind to obtain device handles and use ibdev instead. You can use
ibdev to dynamically configure your GPIB device handle. ibdev also
eliminates unneccessary device name requirements.

If you must modify a device template, refer to one of the following sections.

Windows Me/98/95
To reconfigure GPIB device templates in Windows Me/98/95, complete
the following steps:

1. Select Start»Settings»Control Panel.

2. Double-click on the System icon.

3. Select the Device Manager tab and click on the View devices by type
button.

4. Click on the National Instruments GPIB Interfaces icon.

5. Click on the Properties button.

6. Select the Device Templates tab and rename the template as described
in your application documentation.

7. Click on the OK button twice to save your changes and exit.

Windows 2000/NT
To reconfigure GPIB device templates in Windows 2000/NT, complete the
following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on any GPIB interface and select Properties from the
drop-down menu that appears.

4. Select the device template that you want to modify, such as DEV1.

5. Click on the Configure button and rename the device template as
described in your application documentation.

6. Click on the OK button twice to save your changes and exit.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-13 NI-488.2 User Manual for Windows

Enable/Disable NI-488.2 DOS Support
To enable or disable DOS support for your NI-488.2 application, refer to
one of the following sections.

Windows Me/98/95
To enable or disable NI-488.2 DOS support in Windows Me/98/95,
complete the following steps:

1. Make sure that no older version of the NI-488.2 DOS device driver is
being loaded from your config.sys file. To do so, complete the
following steps:

a. Locate your config.sys file and open it for editing.

b. Find the following line:

device=<path>\gpib.com

where <path> refers to the drive and directory where gpib.com
is located.

c. If that line appears, type REM at the beginning of the line,
as follows:

REM device=<path>\gpib.com

d. Save your config.sys file and close it.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Click on your GPIB interface and select Tools»NI-488.2»DOS
Support... from the Explorer menu.

5. Enable or disable DOS support in the NI-488.2 Settings dialog box
and click on the OK button.

6. If you are prompted to do so, restart your system.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-14 ni.com

Windows 2000/NT
To enable NI-488.2 DOS support in Windows 2000/NT, complete the
following steps:

1. Open your config.nt file, located in the Windows NT system32
directory (for example, c:\windows\system32).

2. Find the following lines:

REM ***To run DOS GPIB applications, uncomment the

REM ***following line

REM device=<path>\doswin16\gpib-nt.com

where <path> is the directory in which you installed the NI-488.2
software.

3. Remove REM from the last line so that it reads as follows:

device=<path>\doswin16\gpib-nt.com

To disable DOS support, add REM back to the line where it was removed.

Access Additional Help and Resources
To access additional help and resources for the NI-488.2 software and your
GPIB hardware, refer to the following sections.

NI-488.2 Online Help
The NI-488.2 for Windows Online Help addresses questions you might
have about NI-488.2, includes troubleshooting information, and describes
the NI-488.2 API. You can access the NI-488.2 online help as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB.

2. Select Help»Help Topics»NI-488.2.

National Instruments GPIB Web Site
To access the National Instruments Web site for GPIB, select
Start»Programs»National Instruments»NI-488.2»Explore GPIB to
start Measurement & Automation Explorer. Then select Help»National
Instruments on the Web»GPIB Home Page.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-15 NI-488.2 User Manual for Windows

View or Change GPIB-ENET Network Settings
(Windows Me/98/95 Only)

To view or change the network settings of your GPIB-ENET, refer to the
following sections. For more information about your GPIB-ENET network
settings, refer to the Getting Started with Your GPIB-ENET and NI-488.2
for Windows Me/98/95 manual.

Assign IP Address
You can run the Assign IP Address utility in Measurement & Automation
Explorer, as follows:

1. Contact your network administrator to determine whether you should
use the Assign IP Address utility to assign the IP address manually.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Right-click on your GPIB-ENET interface and select Assign IP
Address from the drop-down menu that appears.

To view the built-in, context-sensitive help for the Assign IP Address
utility, click on the Help button.

Configure Advanced IP Settings
You can run the Advanced IP Settings utility in Measurement &
Automation Explorer, as follows:

1. Contact your network administrator for the proper subnet information,
including the broadcast IP address and netmask, and up to four router
IP addresses.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Right-click on your GPIB-ENET interface and select Advanced IP
Settings from the drop-down menu that appears.

To view the built-in, context-sensitive help for the Advanced IP Settings
utility, click on the Help button.

Chapter 2 Measurement & Automation Explorer

NI-488.2 User Manual for Windows 2-16 ni.com

Update GPIB-ENET Firmware
You can run the Update Firmware utility in Measurement & Automation
Explorer, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB-ENET interface and select Update
Firmware from the drop-down menu that appears.

To view the built-in, context-sensitive help for the Update Firmware utility,
click on the Help button.

View or Change GPIB-ENET/100 Network Settings
(Windows Me/98/95 Only)

To view or change the network settings of your GPIB-ENET/100, refer to
the following sections. For more information about your GPIB-ENET/100
network settings, refer to the Getting Started with Your GPIB-ENET/100
and NI-488.2 for Windows Me/98/95 manual.

Device Configuration
You can run the NI Ethernet Device Configuration utility in Measurement
& Automation Explorer, as follows:

1. Contact your network administrator to determine whether you should
manually configure the network parameters or enable DHCP.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Right-click on your GPIB-ENET/100 interface and select Device
Configuration from the drop-down menu that appears.

For more information about the NI Ethernet Device Configuration utility,
refer to the Getting Started with Your GPIB-ENET/100 and NI-488.2 for
Windows Me/98/95 manual.

Chapter 2 Measurement & Automation Explorer

© National Instruments Corporation 2-17 NI-488.2 User Manual for Windows

Update GPIB-ENET/100 Firmware
You can run the Firmware Update utility in Measurement & Automation
Explorer, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB-ENET/100 interface and select Update
Firmware from the drop-down menu that appears.

For more information about the Firmware Update utility, refer to the
Getting Started with Your GPIB-ENET/100 and NI-488.2 for Windows
Me/98/95 manual.

© National Instruments Corporation 3-1 NI-488.2 User Manual for Windows

3
Developing Your NI-488.2
Application

This chapter describes how to develop an NI-488.2 application using the
NI-488.2 API.

Simple Instrument Control
To establish basic communication with your instrument, use the NI-488.2
Communicator, as follows:

1. If you have not already done so, scan for connected instruments as
described in the Scan for GPIB Instruments section in Chapter 2,
Measurement & Automation Explorer.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Select your GPIB interface.

Measurement & Automation Explorer displays the connected
instruments in the right window pane.

5. Right-click on your GPIB instrument and select Communicate with
Instrument from the drop-down menu that appears.

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-2 ni.com

The NI-488.2 Communicator dialog box appears, as shown in
Figure 3-1.

Figure 3-1. NI-488.2 Communicator

6. Type a command in the Send String field and do one of the following:

• To write a command to the instrument then read a response back,
click on the Query button.

• To write a command to the instrument, click on the Write button.

• To read a response from the instrument, click on the Read button.

To view sample C/C++ code that performs a simple query of a GPIB
instrument, click on the Show Sample button.

Interactive Instrument Control
Before you write your NI-488.2 application, you might want to use the
Interactive Control utility to communicate with your instruments
interactively by typing individual commands rather than issuing them from
an application. You can also use the Interactive Control utility to learn to
communicate with your instruments using the NI-488.2 API. For specific
device communication instructions, refer to the documentation that came
with your instrument. For information about using the Interactive Control
utility and detailed examples, refer to Chapter 6, Interactive Control
Utility.

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-3 NI-488.2 User Manual for Windows

For advanced interactive communication with GPIB instruments, use the
Interactive Control utility, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select Interactive Control
from the drop-down menu that appears.

4. At the command prompt, type NI-488.2 API calls to communicate
interactively with the your instrument. For example, you might use
ibdev, ibclr, ibwrt, ibrd, and ibonl.

To view the online help for Interactive Control, type help at the Interactive
Control command prompt. For more information, refer to Chapter 6,
Interactive Control Utility.

Choosing Your Programming Methodology
Based on your development environment, you can select a method for
accessing the driver, and based on your NI-488.2 programming needs,
you can choose how to use the NI-488.2 API.

Choosing a Method to Access the NI-488.2 Driver
Applications can access the NI-488.2 dynamic link library (DLL),
gpib-32.dll, either by using an NI-488.2 language interface or by
direct access.

NI-488.2 Language Interfaces
You can use a language interface if your program is written in Microsoft
Visual C/C++ (2.0 or later), Borland C/C++ (4.0 or later), or Microsoft
Visual Basic (4.0 or later). Otherwise, you must access gpib-32.dll
directly.

Direct Entry Access
You can access the DLL directly from any programming environment that
allows you to request addresses of variables and functions that a DLL
exports. gpib-32.dll exports pointers to each of the global variables and
all the NI-488.2 calls.

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-4 ni.com

Choosing How to Use the NI-488.2 API
The NI-488.2 API has two subsets of calls to meet your application needs.
Both of these sets, the traditional calls and the multi-device calls, are
compatible across computer platforms and operating systems, so you can
port programs to other platforms with little or no source code modification.
For most applications, the traditional NI-488.2 calls are sufficient. If you
have a complex configuration with one or more interfaces and multiple
devices, use the multi-device NI-488.2 calls. Whichever option you
choose, bus management operations necessary for device communication
are performed automatically.

The following sections describe some differences between the traditional
NI-488.2 calls and the multi-device NI-488.2 calls.

Communicating with a Single GPIB Device
If your system has only one device attached to each interface, the traditional
NI-488.2 calls are probably sufficient for your programming needs. A
typical NI-488.2 application with a single device has three phases:

• Initialization: use ibdev to get a handle and use ibclr to clear the
device.

• Device Communication: use ibwrt, ibrd, ibtrg , ibrsp, and
ibwait to communicate with the device.

• Cleanup: use ibonl to put the handle offline.

Refer to the sample applications that are installed with the NI-488.2
software to see detailed examples for different GPIB device types.

For NI-488.2 applications that need to control the GPIB in non-typical
ways, for example, to communicate with non-compliant GPIB devices,
there are a set of low-level functions that perform rudimentary GPIB
applications. If you use these functions, you need to understand GPIB
management details like how to address talkers and listeners. Refer to
Appendix A, GPIB Basics, for some details on GPIB management.

The set of low-level functions are called board-level functions. They access
the interface directly and require you to handle the addressing and bus
management protocol. These functions give you the flexibility and control
to handle situations such as the following:

• Communicating with non-compliant (non-IEEE 488.2) devices.

• Altering various low-level interface configurations.

• Managing the bus in non-typical ways.

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-5 NI-488.2 User Manual for Windows

Board-level functions that an NI-488.2 application might use include the
following—ibcmd, ibrd, ibwrt, and ibconfig. For a detailed list, refer
to the NI-488.2 online help. For instructions on accessing the online help,
refer to the Using the NI-488.2 Documentation section in About This
Manual.

Using Multiple Interfaces and/or Multiple Devices
When your system includes an interface that must access multiple devices,
use the multi-device NI-488.2 calls, which can perform the following tasks
with a single call:

• Find the Listeners on the bus using FindLstn.

• Find a device requesting service using FindRQS.

• Determine the state of the SRQ line, or wait for SRQ to be asserted
using TestSRQ or WaitSRQ.

• Address multiple devices to receive a command using SendList.

You can mix board-level traditional NI-488.2 calls with the multi-device
NI-488.2 calls to have access to all the NI-488.2 functionality.

Checking Status with Global Variables
Each NI-488.2 API call updates four global variables to reflect the status
of the device or interface that you are using. These global status variables
are the status word (ibsta), the error variable (iberr), and the count
variables (ibcnt and ibcntl). They contain useful information about the
performance of your application. Your application should check these
variables after each NI-488.2 call. The following sections describe each
of these global variables and how you can use them in your application.

Note If your application is a multithreaded application, refer to the section Writing
Multithreaded Win32 NI-488.2 Applications in Chapter 7, NI-488.2 Programming
Techniques.

Status Word (ibsta)
All NI-488.2 calls update a global status word, ibsta, which contains
information about the state of the GPIB and the GPIB hardware. The value
stored in ibsta is the return value of all the traditional NI-488.2 calls,
except ibfind and ibdev. You can examine various status bits in ibsta

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-6 ni.com

and use that information to make decisions about continued processing.
If you check for possible errors after each call using the ibsta ERR bit,
debugging your application is much easier.

ibsta is a 16-bit value. A bit value of one (1) indicates that a certain
condition is in effect. A bit value of zero (0) indicates that the condition
is not in effect. Each bit in ibsta can be set for device-level traditional
NI-488.2 calls (dev), board-level traditional NI-488.2 calls and
multi-device NI-488.2 calls (brd), or all (dev, brd).

Table 3-1 shows the condition that each bit position represents, the bit
mnemonics, and the type of calls for which the bit can be set. For a detailed
explanation of each status condition, refer to Appendix B, Status Word
Conditions.

Table 3-1. Status Word Layout

Mnemonic
Bit
Pos

Hex
Value Type Description

ERR 15 8000 dev, brd NI-488.2 error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting
service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-7 NI-488.2 User Manual for Windows

The language header file defines each of the ibsta status bits. You can
test for an ibsta status bit being set using the bitwise and operator
(& in C/C++). For example, the ibsta ERR bit is bit 15 of ibsta.

To check for an NI-488.2 error, use the following statement after each
NI-488.2 call:

if (ibsta & ERR)

printf("NI-488.2 error encountered");

Error Variable (iberr)
If the ERR bit is set in ibsta, an NI-488.2 error has occurred. When an
error occurs, the error type is specified by iberr. To check for an NI-488.2
error, use the following statement after each NI-488.2 call:

if (ibsta & ERR)

printf("NI-488.2 error %d encountered", iberr);

Note The value in iberr is meaningful as an error type only when the ERR bit is set in
ibsta, indicating that an error has occurred.

For more information about error codes and solutions, refer to Chapter 4,
Debugging Your Application, or Appendix C, Error Codes and Solutions.

Count Variables (ibcnt and ibcntl)
The count variables are updated after each read, write, or command
function. In Win32 applications, ibcnt and ibcntl are 32-bit integers.
On some systems, like MS-DOS, ibcnt is a 16-bit integer, and ibcntl
is a 32-bit integer. For cross-platform compatibility, all applications should
use ibcntl. If you are reading data, the count variables indicate the
number of bytes read. If you are sending data or commands, the count
variables reflect the number of bytes sent.

Using Interactive Control to Communicate with Devices
Before you begin writing your application, you might want to use the
Interactive Control utility to communicate with your instruments
interactively by typing in commands from the keyboard rather than from
an application. You can use the Interactive Control utility to learn to
communicate with your instruments using the NI-488.2 API. For specific
device communication instructions, refer to the user manual that came with
your instrument. For information about using the Interactive Control utility
and detailed examples, refer to Chapter 6, Interactive Control Utility.

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-8 ni.com

Programming Models

Applications That Communicate with a Single GPIB Device
This section describes items you should include in your application and
provides general program steps with an NI-488.2 example.

Items to Include
Include the following items in your application:

• Header files—In a C application, include the header files windows.h
and decl-32.h. The standard Windows header file, windows.h,
contains definitions used by decl-32.h, and decl-32.h contains
prototypes for the NI-488.2 calls and constants that you can use in your
application.

• Error checking—Check for errors after each NI-488.2 call.

• Error handling—Declare and define a function to handle NI-488.2
errors. This function takes the device offline and closes the application.
If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

Then, your application invokes it as follows:

if (ibsta & ERR) {

gpiberr("NI-488.2 error");

}

General Program Steps and Examples
The following steps show you how to use the device-level traditional
NI-488.2 calls in your application. The NI-488.2 software includes the
source code for an example written in C, devquery.c, and the source
code for the example written to use direct entry to access gpib-32.dll,
dlldevquery.c. The NI-488.2 software also includes a sample program
written in Visual Basic, devquery.frm.

Initialization

Step 1. Open a Device
Use ibdev to open a device handle. The ibdev function requires the
following parameters:

• Connect board index (typically 0, for GPIB0).

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-9 NI-488.2 User Manual for Windows

• Primary address for the GPIB instrument (refer to the instrument user
manual or use the FindLstn function to dynamically determine the
GPIB address of your GPIB device, as described in Step 2. Determine
the GPIB Address of Your Device in the section Applications That Use
Multiple Interfaces or Communicate with Multiple GPIB Devices later
in this chapter).

• Secondary address for the GPIB instrument (0 if the GPIB instrument
does not use secondary addressing).

• Timeout period (typically set to T10s, which is 10 seconds).

• End-of-transfer mode (typically set to 1 so that EOI is asserted with the
last byte of writes).

• EOS detection mode (typically 0 if the GPIB instrument does not use
EOS characters).

A successful ibdev call returns a device handle, ud, that is used for all
device-level traditional NI-488.2 calls that communicate with the GPIB
instrument.

Step 2. Clear the Device
Use ibclr to clear the device. This resets the device’s internal functions to
the default state.

Device Communication
Step 3. Communicate with the Device
Communicate with the device by sending it the "*IDN?" query and then
reading back the response. Many devices respond to this query by returning
a description of the device. Refer to the documentation that came with your
GPIB device to see specific instructions on the proper way to communicate
with it.

Step 3a.
Use ibwrt to send the "*IDN?" query command to the device.

Step 3b.
Use ibrd to read the response from the device.

Continue communicating with the GPIB device until you are finished.

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-10 ni.com

Cleanup

Step 4. Place the Device Offline before Exiting Your Application
Use ibonl to put the device handle offline before you exit the application.

Applications That Use Multiple Interfaces or Communicate with
Multiple GPIB Devices

This section describes items you should include in your application and
provides general program steps with an NI-488.2 example.

Items to Include
Include the following items in your application:

• Header files—In a C application, include the header files windows.h
and decl-32.h. The standard Windows header file, windows.h,
contains definitions used by decl-32.h, and decl-32.h contains
prototypes for the NI-488.2 calls and constants that you can use in your
application.

• Error checking—Check for errors after each NI-488.2 call.

• Error handling—Declare and define a function to handle NI-488.2
errors. This function takes the device offline and closes the application.
If the function is declared as:

void gpiberr (char * msg); /*function prototype*/

Then your application invokes it as follows:

if (ibsta & ERR) {

gpiberr("NI-488.2 error");

}

General Program Steps and Examples
The following steps show you how to use the multi-device NI-488.2 calls
in your application. The NI-488.2 software includes the source code for an
example written in C, 4882query.c, and the source code for the example
written to use direct entry to access the gpib-32.dll, dll4882query.c.
The NI-488.2 software also includes a sample program written in Visual
Basic, query4882.frm.

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-11 NI-488.2 User Manual for Windows

Initialization

Step 1. Become Controller-In-Charge (CIC)
Use SendIFC to initialize the bus and the GPIB interface so that the GPIB
interface is Controller-In-Charge (CIC). The only argument of SendIFC is
the GPIB interface number, typically 0 for GPIB0.

Step 2. Determine the GPIB Address of Your Device
Use FindLstn to find all the devices attached to the GPIB. The FindLstn
function requires the following parameters:

• Interface number (typically 0, for GPIB0).

• A list of primary addresses, terminated with the NOADDR constant.

• A list for reported GPIB addresses of devices found listening on the
GPIB.

• Limit, which is the number of the GPIB addresses to report.

Use FindLstn to test for the presence of all of the primary addresses that
are passed to it. If a device is present at a particular primary address, then
the primary address is stored in the GPIB addresses list. Otherwise, all
secondary addresses of the given primary address are tested, and the GPIB
address of any devices found are stored in the GPIB addresses list. When
you have the list of GPIB addresses, you can determine which one
corresponds to your instrument and use it for subsequent calls.

Alternately, if you already know your GPIB device’s primary and
secondary address, you can create an appropriate GPIB address to use in
subsequent NI-488.2 calls, as follows: a GPIB address is a 16-bit value that
contains the primary address in the low byte and the secondary address in
the high byte. If you are not using secondary addressing, the secondary
address is 0. For example, if the primary address is 1, then the 16-bit value
is 0x01; otherwise, if the primary address is 1 and the secondary address is
0x67, then the 16-bit value is 0x6701.

Step 3. Initialize the Devices
Use DevClearList to clear the devices on the GPIB. The first argument
is the GPIB interface number. The second argument is the list of GPIB
addresses that were found to be listening as determined in Step 2.

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-12 ni.com

Device Communication

Step 4. Communicate with the Devices
Communicate with the devices by sending them the "*IDN?" query and
then reading back the responses. Many devices respond to this query by
returning a description of the device. Refer to the documentation that came
with your GPIB devices to see specific instruction on the proper way to
communicate with them.

Step 4a.
Use SendList to send the "*IDN?" query command to multiple GPIB
devices. The address is the list of GPIB devices to be queried. The buffer
that you pass to SendList is the command message to the device.

Step 4b.
Use Receive for each device to read the responses from each device.

Continue communicating with the GPIB devices until you are finished.

Cleanup

Step 5. Place the Interface Offline before Exiting Your Application
Use ibonl to put the interface offline before you exit the application.

Language-Specific Programming Instructions
The following sections describe how to develop, compile, and link your
Win32 NI-488.2 applications using various programming languages.

Microsoft Visual C/C++ (Version 2.0 or Later)
Before you compile your Win32 C application, make sure that the
following lines are included at the beginning of your program:

#include <windows.h>

#include "decl-32.h"

To compile and link a Win32 console application named cprog in a DOS
shell, type the following on the command line:

cl cprog.c gpib-32.obj

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-13 NI-488.2 User Manual for Windows

Borland C/C++ (Version 4.0 or Later)
Before you compile your Win32 C application, make sure that the
following lines are included at the beginning of your program:

#include <windows.h>

#include "decl-32.h"

To compile and link a Win32 console application named cprog in a DOS
shell, type the following on the command line:

bcc32 -w32 cprog.c borlandc_gpib-32.obj

Visual Basic (Version 4.0 or Later)
With Visual Basic, you can access the traditional NI-488.2 calls as
subroutines, using the BASIC keyword CALL followed by the traditional
NI-488.2 call name, or you can access them using the il set of functions.
With some of the NI-488.2 calls (for example ibrd and Receive), the
length of the string buffer is automatically calculated within the actual
function or subroutine, which eliminates the need to pass in the length as
an extra parameter. For more information about function syntax for Visual
Basic, refer to the NI-488.2 online help. For instructions on accessing the
online help, refer to the Using the NI-488.2 Documentation section in
About This Manual.

Before you run your Visual Basic application, include the niglobal.bas
and vbib-32.bas files in your application project file.

Direct Entry with C
The following sections describe how to use direct entry with C.

gpib-32.dll Exports
gpib-32.dll exports pointers to the global variables and all of the
NI-488.2 calls. Pointers to the global variables (ibsta, iberr, ibcnt,
and ibcntl) are accessible through these exported variables:

int *user_ibsta;

int *user_iberr;

int *user_ibcnt;

long *user_ibcntl;

Except for the functions ibbna, ibfind, ibrdf, and ibwrtf, all
the NI-488.2 call names are exported from gpib-32.dll. Thus, to use
direct entry to access a particular function and to get a pointer to the

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-14 ni.com

exported function, you just need to call GetProcAddress passing the
name of the function as a parameter. For more information about the
parameters to use when you invoke the function, refer to the NI-488.2
online help. For instructions on accessing the online help, refer to the
Using the NI-488.2 Documentation section in About This Manual.

The functions ibbna, ibfind, ibrdf, and ibwrtf all require an
argument that is a name. ibbna requires an interface name, ibfind
requires an interface or device name, and ibrdf and ibwrtf require a file
name. Because Windows 2000/NT supports both normal (8-bit) and
Unicode (16-bit) characters, gpib-32.dll exports both normal and
Unicode versions of these functions. Because Windows Me/98/95 does not
support 16-bit wide characters, use only the 8-bit ASCII versions, named
ibbnaA, ibfindA, ibrdfA, and ibwrtfA. The Unicode versions are
named ibbnaW, ibfindW, ibrdfW, and ibwrtfW. You can use either the
Unicode or ASCII versions of these functions with Windows 2000/NT, but
only the ASCII versions with Windows Me/98/95.

In addition to pointers to the status variables and a handle to the loaded
gpib-32.dll, you must define the direct entry prototypes for the
functions you use in your application. For the prototypes for each function
exported by gpib-32.dll, refer to the NI-488.2 online help. For
instructions on accessing the online help, refer to the Using the NI-488.2
Documentation section in About This Manual.

The direct entry sample programs illustrate how to use direct entry to access
gpib-32.dll. For more information about direct entry, refer to the online
help for your development environment.

Directly Accessing the gpib-32.dll Exports
Make sure that the following lines are included at the beginning of your
application:

#ifdef __cplusplus

extern "C"{

#endif

#include <windows.h>

#include "decl-32.h"

#ifdef __cplusplus

}

#endif

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-15 NI-488.2 User Manual for Windows

In your Win32 application, you need to load gpib-32.dll before
accessing the gpib-32.dll exports. The following code fragment shows
you how to call the LoadLibrary function to load gpib-32.dll and
check for an error:

HINSTANCE Gpib32Lib = NULL;

Gpib32Lib=LoadLibrary("GPIB-32.DLL");

if (Gpib32Lib == NULL) {

 return FALSE;

}

For the prototypes for each function, refer to the NI-488.2 online help. For
instructions on accessing the online help, refer to the Using the NI-488.2
Documentation section in About This Manual.

For functions that return an integer value, like ibdev or ibwrt, the pointer
to the function needs to be cast as follows:

int (_stdcall *Pname)

where *Pname is the name of the pointer to the function. For functions that
do not return a value, like FindLstn or SendList, the pointer to the
function needs to be cast as follows:

void (_stdcall *Pname)

where *Pname is the name of the pointer to the function. They are followed
by the function’s list of parameters as described in the NI-488.2 online help.
For instructions on accessing the online help, refer to the Using the
NI-488.2 Documentation section in About This Manual.

Following is an example of how to cast the function pointer and how the
parameter list is set up for ibdev and ibonl functions:

int (_stdcall *Pibdev)(int ud, int pad, int sad, int tmo,

int eot, int eos);

int (_stdcall *Pibonl)(int ud, int v);

Next, your Win32 application needs to use GetProcAddress to get the
addresses of the global status variables and functions your application
needs. The following code fragment shows you how to get the addresses
of the pointers to the status variables and any functions your application
needs:

/* Pointers to NI-488.2 global status variables */

int *Pibsta;

int *Piberr;

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-16 ni.com

long *Pibcntl;

static int(__stdcall *Pibdev)

(int ud, int pad, int sad, int tmo, int eot,

 int eos);

static int(__stdcall *Pibonl)

(int ud, int v);

Pibsta = (int *) GetProcAddress(Gpib32Lib,

(LPCSTR)"user_ibsta");

Piberr = (int *) GetProcAddress(Gpib32Lib,

(LPCSTR)"user_iberr");

Pibcntl = (long *) GetProcAddress(Gpib32Lib,

(LPCSTR)"user_ibcnt");

Pibdev = (int (__stdcall *)

(int, int, int, int, int, int))

GetProcAddress(Gpib32Lib, (LPCSTR)"ibdev");

Pibonl = (int (__stdcall *)(int, int))

GetProcAddress(Gpib32Lib, (LPCSTR)"ibonl");

If GetProcAddress fails, it returns a NULL pointer. The following
code fragment shows you how to verify that none of the calls to
GetProcAddress failed:

if ((Pibsta == NULL) ||

 (Piberr == NULL) ||

 (Pibcntl == NULL) ||

 (Pibdev == NULL) ||

 (Pibonl == NULL)) {

 /* Free the GPIB library */

 FreeLibrary(Gpib32Lib);

 printf("GetProcAddress failed.");

}

Your Win32 application needs to dereference the pointer to access either
the status variables or function. The following code shows you how to call
a function and access the status variable from within your application:

dvm = (*Pibdev) (0, 1, 0, T10s, 1, 0);

if (*Pibsta & ERR) {

 printf("Call failed");

}

Chapter 3 Developing Your NI-488.2 Application

© National Instruments Corporation 3-17 NI-488.2 User Manual for Windows

Before exiting your application, you need to free gpib-32.dll with the
following command:

FreeLibrary(Gpib32Lib);

For more examples of directly accessing gpib-32.dll, refer to the direct
entry sample programs dlldevquery.c and dll4882query.c, installed
with the NI-488.2 software. For more information about direct entry, refer
to the online help for your development environment.

Running Existing NI-488.2 Applications

Running Existing Win32 and Win16 NI-488.2 Applications
The NI-488.2 software includes the necessary components to allow
existing Win32 and Win16 NI-488.2 applications to run properly.

Running Existing DOS NI-488.2 Applications Under Windows Me/98/95
To configure the NI-488.2 software to run existing DOS NI-488.2
applications, complete the following steps:

1. Make sure that no older version of the NI-488.2 DOS device driver is
being loaded from your config.sys file. To do so, complete the
following steps:

a. Locate your config.sys file and open it for editing.

b. Find the following line:

device=<path>\gpib.com

where <path> refers to the drive and directory where gpib.com
is located.

c. If that line appears, type REM at the beginning of the line, as
follows:

REM device=<path>\gpib.com

d. Save your config.sys file and close it.

2. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

3. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

4. Select your GPIB interface and select Tools»NI-488.2»DOS
Support... from the Explorer menu.

Chapter 3 Developing Your NI-488.2 Application

NI-488.2 User Manual for Windows 3-18 ni.com

5. Enable or disable DOS support in the NI-488.2 Settings dialog box
and click on the OK button.

6. If you are prompted to do so, restart your system.

Running Existing DOS NI-488.2 Applications under Windows 2000/NT
To run DOS NI-488.2 applications, you must enable NI-488.2 DOS
support under Windows 2000/NT. To enable NI-488.2 DOS support in
Windows 2000/NT, complete the following steps:

1. Open your config.nt file, located in the Windows 2000/NT
system32 directory (for example, c:\windows\system32).

2. Find the following lines:

REM ***To run DOS GPIB applications, uncomment the

REM ***following line

REM device=<path>\doswin16\gpib-nt.com

where <path> is the directory in which you installed the NI-488.2
software.

3. Remove REM from the last line so that it reads as follows:

device=<path>\doswin16\gpib-nt.com

To disable DOS support, add REM back to the line where it was removed.

© National Instruments Corporation 4-1 NI-488.2 User Manual for Windows

4
Debugging Your Application

This chapter describes several ways to debug your application.

NI Spy
The NI Spy utility monitors NI-488.2 API calls made by NI-488.2
applications. It records NI-488.2 API input and output values from all
Win32, Win16, and DOS NI-488.2 applications.

To start NI Spy, complete the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select NI Spy from the
drop-down menu that appears.

4. On the NI Spy toolbar, click on the blue arrow button to start a capture.

5. Start the NI-488.2 application that you want to monitor.

Chapter 4 Debugging Your Application

NI-488.2 User Manual for Windows 4-2 ni.com

NI Spy records and displays all NI-488.2 calls, as shown in Figure 4-1.

Figure 4-1. NI-488.2 Calls Recorded by NI Spy

For more information about using NI Spy, select Help»Help Topics in
NI Spy or refer to Chapter 5, NI Spy Utility.

Global Status Variables
At the end of each NI-488.2 call, the global status variables (ibsta,
iberr, ibcnt, and ibcntl) are updated. If you are developing an
NI-488.2 application, you should check for errors after each NI-488.2 call.
If a NI-488.2 call failed, the high bit of ibsta (the ERR bit) is set. For a
failed NI-488.2 call, iberr contains a value that defines the error. In some
error cases, the value in ibcntl contains even more error information.

You can use NI Spy to determine which NI-488.2 call is failing. Once
you know which NI-488.2 call fails, refer to Appendix B, Status Word
Conditions, and Appendix C, Error Codes and Solutions, for help
understanding why the NI-488.2 call failed. This information is also
available in the NI-488.2 online help. For instructions on accessing the
online help, refer to the Using the NI-488.2 Documentation section in
About This Manual.

Chapter 4 Debugging Your Application

© National Instruments Corporation 4-3 NI-488.2 User Manual for Windows

Existing Applications
If the application does not have built-in error detection handling, you can
use NI Spy to determine which NI-488.2 call is failing.

To start NI Spy, refer to the NI Spy section earlier in this chapter.

After you have an NI Spy capture file, you can use NI Spy to search for
failed NI-488.2 calls by searching for calls with the ERR bit set. Once you
know which NI-488.2 call fails, refer to Appendix B, Status Word
Conditions, and Appendix C, Error Codes and Solutions, for help
understanding why the NI-488.2 call failed. This information is also
available in the NI-488.2 online help. For instructions on accessing the
online help, refer to the Using the NI-488.2 Documentation section in
About This Manual.

NI-488.2 Error Codes
The error variable is meaningful only when the ERR bit in the status
variable, ibsta, is set. For a detailed description of each error and possible
solutions, refer to Appendix C, Error Codes and Solutions.

Configuration Errors
Several applications require customized configuration of the NI-488.2
driver. For example, you might want to terminate reads on a special
end-of-string character, or you might require secondary addressing. In
these cases, you can either reconfigure from your application using the
ibconfig function or reconfigure using the NI-488.2 Configuration
utility.

Note National Instruments recommends using ibconfig to modify the configuration.

If your application uses ibconfig, it works properly regardless of the
previous configuration. For more information about using ibconfig,
refer to the description of ibconfig in the NI-488.2 online help. For
instructions on accessing the online help, refer to the Using the NI-488.2
Documentation section in About This Manual.

Chapter 4 Debugging Your Application

NI-488.2 User Manual for Windows 4-4 ni.com

Timing Errors
If your application fails, but the same calls issued interactively in the
Interactive Control utility are successful, your program might be issuing
the NI-488.2 calls too quickly for your device to process and respond to
them. This problem can also result in corrupted or incomplete data. This
should only be a problem with older, non-standard GPIB devices.

To check if your interactively issued NI-488.2 calls succeed, use the
Interactive Control utility. To start the Interactive Control utility, complete
the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select Interactive Control
from the drop-down menu that appears.

4. At the command prompt, type NI-488.2 API calls to communicate
interactively with the your instrument. For example, you might use
ibdev, ibclr, ibwrt, ibrd, and ibonl.

To view the online help for Interactive Control, type help at the Interactive
Control command prompt.

A well-behaved IEEE 488 device does not experience timing errors. If your
device is not well-behaved, you can test for and resolve the timing error by
single-stepping through your program and inserting finite delays between
each NI-488.2 call. One way to do this is to have your device communicate
its status whenever possible. Although this method is not possible with
many devices, it is usually the best option. Your delays are controlled by the
device and your application can adjust itself and work independently on
any platform. Other delay mechanisms probably exhibit differing behaviors
on different platforms and thus might not eliminate timing errors.

Chapter 4 Debugging Your Application

© National Instruments Corporation 4-5 NI-488.2 User Manual for Windows

Communication Errors
The following sections describe communication errors you might
encounter in your application.

Repeat Addressing
Devices adhering to the IEEE 488.2 standard should remain in their current
state until specific commands are sent across the GPIB to change their
state. However, some devices require GPIB addressing before any GPIB
activity. Therefore, you might need to configure your NI-488.2 driver to
perform repeat addressing if your device does not remain in its currently
addressed state. You can either reconfigure from your application using
ibconfig, or reconfigure using the NI-488.2 Configuration utility.

Note National Instruments recommends using ibconfig to modify the configuration.

If your application uses ibconfig, it works properly regardless of the
previous configuration. For more information about ibconfig, refer to the
description of ibconfig in the NI-488.2 online help. For instructions on
accessing the online help, refer to the Using the NI-488.2 Documentation
section in About This Manual.

Termination Method
You should be aware of the data termination method that your device uses.
By default, your NI-488.2 software is configured to send EOI on writes and
terminate reads on EOI or a specific byte count. If you send a command
string to your device and it does not respond, it might not be recognizing
the end of the command. In that case, you need to send a termination
message, such as <CR> <LF>, after a write command, as follows:

ibwrt(dev,"COMMAND\x0A\x0D",9);

Other Errors
If you experience other errors in your application, refer to the NI-488.2
online help. It includes extensive troubleshooting information and the
answers to frequently asked questions. For instructions on accessing the
online help, refer to the Using the NI-488.2 Documentation section in
About This Manual.

© National Instruments Corporation 5-1 NI-488.2 User Manual for Windows

5
NI Spy Utility

This chapter introduces you to NI Spy, a utility that monitors and records
multiple National Instruments APIs (for example, NI-488.2 and VISA).

Overview
NI Spy monitors, records, and displays the NI-488.2 calls made from
Win32, Win16, and DOS NI-488.2 applications. It is a useful tool for
troubleshooting errors in your application and for verifying that the
communication with your GPIB instrument is correct.

Starting NI Spy
To start NI Spy, complete the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select NI Spy from the
drop-down menu that appears.

4. On the NI Spy toolbar, click on the blue arrow button to start a capture.

5. Start the NI-488.2 application that you want to monitor.

Chapter 5 NI Spy Utility

NI-488.2 User Manual for Windows 5-2 ni.com

NI Spy records and displays all NI-488.2 calls, as shown in Figure 5-1.

Figure 5-1. NI-488.2 Calls Recorded by NI Spy

Using the NI Spy Online Help
To view the built-in, context-sensitive online help for the NI Spy utility,
select Help»Help Topics in NI Spy. You can also view the online help
by clicking on the question mark button on the NI Spy toolbar, and then
clicking on the area of the screen about which you have a question.

Locating Errors with NI Spy
All NI-488.2 calls returned with an error are displayed in red within the
main NI Spy window.

Viewing Properties for Recorded Calls
To see the detailed properties of any call recorded in the main NI Spy
window, double-click on the call. The Call Properties window appears.
It contains general, input, output, and buffer information.

Chapter 5 NI Spy Utility

© National Instruments Corporation 5-3 NI-488.2 User Manual for Windows

Exiting NI Spy
When you exit NI Spy, its current configuration is saved and used to
configure NI Spy when you start it again. Unless you save the data captured
in NI Spy before you exit, that information is lost.

To save the captured data, click on the red circled X button on the toolbar
and select File»Save As to save the data in a .spy file. After you save your
data, select File»Exit to exit the NI Spy utility.

Performance Considerations
NI Spy can slow down the performance of your NI-488.2 application, and
certain configurations of NI Spy have a larger impact on performance than
others. For example, configuring NI Spy to record calls to an output file or
to use full buffers might have a significant impact on the performance of
both your application and your system. For this reason, use NI Spy only
while you are debugging your application or in situations where
performance is not critical.

© National Instruments Corporation 6-1 NI-488.2 User Manual for Windows

6
Interactive Control Utility

This chapter introduces you to the Interactive Control utility, which lets
you communicate with GPIB devices interactively.

Overview
With the Interactive Control utility, you communicate with the GPIB
devices through functions you interactively type in at the keyboard. For
specific information about communicating with your particular device,
refer to the documentation that came with the device. You can use the
Interactive Control utility to practice communication with the instrument,
troubleshoot problems, and develop your application.

The Interactive Control utility helps you to learn about your instrument and
to troubleshoot problems by displaying the following information on your
screen after you enter a command:

• Results of the status word (ibsta) in hexadecimal notation.

• Mnemonic constant of each bit set in ibsta.

• Mnemonic value of the error variable (iberr) if an error exists
(the ERR bit is set in ibsta).

• Count value for each read, write, or command function.

• Data received from your instrument.

Getting Started with Interactive Control
This section shows you how to use the Interactive Control utility to test a
sequence of NI-488.2 calls.

To start the Interactive Control utility, complete the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

Chapter 6 Interactive Control Utility

NI-488.2 User Manual for Windows 6-2 ni.com

3. Right-click on your GPIB interface and select Interactive Control
from the drop-down menu that appears.

For help on any Interactive Control command, type help followed by
the command. For example, type help ibdev or help set.

4. Open either an interface handle or device handle to use for further
NI-488.2 calls. Use ibdev to open a device handle, ibfind to open
an interface handle, or the set 488.2 command to switch to a
488.2 prompt.

The following example uses ibdev to open a device, assigns it to
access interface gpib0, chooses a primary address of 6 with no
secondary address, sets a timeout of 10 seconds, enables the END
message, and disables the EOS mode:

:ibdev

enter board index: 0
enter primary address: 6
enter secondary address: 0
enter timeout: 13
enter ‘EOI on last byte’ flag: 1
enter end-of-string mode/byte: 0

ud0:

Note If you type a command and no parameters, Interactive Control prompts you for the
necessary arguments. If you already know the required arguments, you can type them at
the command prompt, as follows:

:ibdev 0 6 0 13 1 0

ud0:

Note If you do not know the primary and secondary address of your GPIB instrument,
right-click on your GPIB interface in Measurement & Automation Explorer and select
Scan for Instruments. After Explorer scans your interface, it displays your instrument
address in the right window pane. The instrument shown in Figure 6-1 has a primary
address of 1 and no secondary address.

Figure 6-1. Instrument Address in Measurement & Automation Explorer

Chapter 6 Interactive Control Utility

© National Instruments Corporation 6-3 NI-488.2 User Manual for Windows

5. After you successfully complete ibdev, you have a ud prompt. The
new prompt, ud0, represents a device-level handle that you can use for
further NI-488.2 calls. To clear the device, use ibclr, as follows:

ud0: ibclr
[0100] (cmpl)

6. To write data to the device, use ibwrt. Make sure that you refer to the
documentation that came with your GPIB instrument for recognized
command messages.

ud0: ibwrt
 enter string: "*IDN?"

[0100] (cmpl)

count: 5

Or, equivalently:

ud0: ibwrt "*IDN?"

[0100] (cmpl)

count: 5

7. To read data from your device, use ibrd. The data that is read from the
instrument is displayed. For example, to read 29 bytes, enter the
following:

ud0: ibrd

 enter byte count: 29

[0100] (cmpl)

count: 29

46 4C 55 4B 45 2C 20 34 FLUKE, 4

35 2C 20 34 37 39 30 31 5, 47901

37 33 2C 20 31 2E 36 20 73, 1.6

44 31 2E 30 0A D.10.

Or, equivalently:

ud0: ibrd 29

[0100] (cmpl)

count: 29

46 4C 55 4B 45 2C 20 34 FLUKE, 4

35 2C 20 34 37 39 30 31 5, 47901

37 33 2C 20 31 2E 36 20 73, 1.6

44 31 2E 30 0A D.10.

8. When you finish communicating with the device, make sure you put it
offline using the ibonl command, as follows:

ud0: ibonl 0
[0100] (cmpl)

:

Chapter 6 Interactive Control Utility

NI-488.2 User Manual for Windows 6-4 ni.com

The ibonl command properly closes the device handle and the ud0
prompt is no longer available.

9. To exit Interactive Control, type q.

Interactive Control Syntax
The following special rules apply to making calls from the Interactive
Control utility:

• The ud or BoardId parameter is implied by the Interactive Control
prompt, therefore it is never included in the call.

• The count parameter to functions is unnecessary because buffer
lengths are automatically determined by Interactive Control.

• Function return values are handled automatically by Interactive
Control. In addition to printing out the return ibsta value for the
function, it also prints other return values.

• If you do not know what parameters are appropriate to pass to a given
function call, type in the function name and press <Enter>. The
Interactive Control utility then prompts you for each required
parameter.

Number Syntax
You can enter numbers in either hexadecimal or decimal format.

Hexadecimal numbers—You must prefix hexadecimal numbers with 0x.
For example, ibpad 0x16 sets the primary address to 16 hexadecimal
(22 decimal).

Decimal numbers—Enter the number only. For example, ibpad 22 sets
the primary address to 22 decimal.

String Syntax
You can enter strings as an ASCII character sequence, hex bytes, or special
symbols.

ASCII character sequence—You must enclose the entire sequence in
quotation marks.

Hex byte—You must use a backslash character and an x, followed by the
hex value. For example, hex 40 is represented by \x40.

Chapter 6 Interactive Control Utility

© National Instruments Corporation 6-5 NI-488.2 User Manual for Windows

Special symbols—Some instruments require special termination or
end-of-string (EOS) characters that indicate to the device that a
transmission has ended. The two most common EOS characters are \r and
\n. \r represents a carriage return character and \n represents a linefeed
character. You can use these special characters to insert the carriage return
and linefeed characters into a string, as in "*IDN?\r\n".

Address Syntax
Some of the NI-488.2 calls have an address or address list parameter. An
address is a 16-bit representation of the GPIB device address. The primary
address is stored in the low byte and the secondary address, if any, is stored
in the high byte. For example, a device at primary address 6 and secondary
address 0x67 has an address of 0x6706. A NULL address is represented as
0xffff. An address list is represented by a comma-separated list of
addresses, such as 1,2,3.

Interactive Control Commands
Tables 6-1 and 6-2 summarize the syntax of the traditional NI-488.2 calls
in the Interactive Control utility. Table 6-3 summarizes the syntax of the
multi-device NI-488.2 calls in the Interactive Control utility. Table 6-4
summarizes the auxiliary functions that you can use in the Interactive
Control utility. For more information about the function parameters, use
the online help, available by typing in help. If you enter only the function
name, the Interactive Control utility prompts you for parameters.

Table 6-1. Syntax for Device-Level Traditional NI-488.2 Calls in Interactive Control

Syntax Description

ibask option Return configuration information where option is a mnemonic for a
configuration parameter

ibbna bname Change access interface of device where bname is symbolic name of
new interface

ibclr Clear specified device

ibconfig option

value

Alter configurable parameters where option is mnemonic for a
configuration parameter

ibdev BdIndx pad

sad tmo eot eos

Open an unused device; ibdev parameters are BdIndx pad sad tmo
eot eos

Chapter 6 Interactive Control Utility

NI-488.2 User Manual for Windows 6-6 ni.com

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

ibln pad sad Check for presence of device on the GPIB at pad, sad

ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibpct Pass control

ibppc v Parallel poll configure

ibrd count Read data where count is the bytes to read

ibrda count Read data asynchronously where count is the bytes to read

ibrdf flname Read data to file where flname is pathname of file to read

ibrpp Conduct a parallel poll

ibrsp Return serial poll byte

ibsad v Change secondary address

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibtrg Trigger selected device

ibwait mask Wait for selected event where mask is a hex or decimal integer or a list
of mask bit mnemonics, such as ibwait TIMO CMPL

ibwrt wrtbuf Write data

ibwrta wrtbuf Write data asynchronously

ibwrtf flname Write data from a file where flname is pathname of file to write

Table 6-1. Syntax for Device-Level Traditional NI-488.2 Calls in Interactive Control (Continued)

Syntax Description

Chapter 6 Interactive Control Utility

© National Instruments Corporation 6-7 NI-488.2 User Manual for Windows

Table 6-2. Syntax for Board-Level Traditional NI-488.2 Calls in Interactive Control

Syntax Description

ibask option Return configuration information where option is a mnemonic for
a configuration parameter

ibcac v Become active Controller

ibcmd cmdbuf Send commands

ibcmda cmdbuf Send commands asynchronously

ibconfig option

value

Alter configurable parameters where option is mnemonic for a
configuration parameter

ibdma v Enable/disable DMA

ibeos v Change/disable EOS message

ibeot v Enable/disable END message

ibfind udname Return unit descriptor where udname is the symbolic name of
interface (for example, gpib0)

ibgts v Go from Active Controller to standby

ibist v Set/clear ist

iblines Read the state of all GPIB control lines

ibln pad sad Check for presence of device on the GPIB at pad, sad

ibloc Go to local

ibonl v Place device online or offline

ibpad v Change primary address

ibppc v Parallel poll configure

ibrd count Read data where count is the bytes to read

ibrda count Read data asynchronously where count is the bytes to read

ibrdf flname Read data to file where flname is pathname of file to read

ibrpp Conduct a parallel poll

ibrsc v Request/release system control

ibrsv v Request service

ibsad v Change secondary address

Chapter 6 Interactive Control Utility

NI-488.2 User Manual for Windows 6-8 ni.com

ibsic Send interface clear

ibsre v Set/clear remote enable line

ibstop Abort asynchronous operation

ibtmo v Change/disable time limit

ibwait mask Wait for selected event where mask is a hex or decimal integer or a list
of mask bit mnemonics, such as ibwait TIMO CMPL

ibwrt wrtbuf Write data

ibwrta wrtbuf Write data asynchronously

ibwrtf flname Write data from a file where flname is pathname of file to write

Table 6-3. Syntax for Multi-Device NI-488.2 Calls in Interactive Control

Syntax Description

AllSpoll addrlist Serial poll multiple devices

DevClear address Clear a device

DevClearList addrlist Clear multiple devices

EnableLocal addrlist Enable local control

EnableRemote addrlist Enable remote control

FindLstn padlist limit Find all Listeners

FindRQS addrlist Find device asserting SRQ

PassControl address Pass control to a device

PPoll Parallel poll devices

PPollConfig address dataline

lineSense

Configure device for parallel poll

PPollUnconfig addrlist Unconfigure device for parallel poll

RcvRespMsg count termination Receive response message

ReadStatusByte address Serial poll a device

Receive address count termination Receive data from a device

Table 6-2. Syntax for Board-Level Traditional NI-488.2 Calls in Interactive Control (Continued)

Syntax Description

Chapter 6 Interactive Control Utility

© National Instruments Corporation 6-9 NI-488.2 User Manual for Windows

ReceiveSetup address Receive setup

ResetSys addrlist Reset multiple devices

Send address buffer eotmode Send data to a device

SendCmds buffer Send command bytes

SendDataBytes buffer eotmode Send data bytes

SendIFC Send interface clear

SendList addrlist buffer eotmode Send data to multiple devices

SendLLO Put devices in local lockout

SendSetup addrlist Send setup

SetRWLS addrlist Put devices in remote with lockout state

TestSRQ Test for service request

TestSys addrlist Cause multiple devices to perform self-tests

Trigger address Trigger a device

TriggerList addrlist Trigger multiple devices

WaitSRQ Wait for service request

Table 6-4. Auxiliary Functions in Interactive Control

Function Description

set udname Select active device or interface where udname is the symbolic name of the
new device or interface (for example, dev1 or gpib0). Call ibfind or ibdev
initially to open each device or interface.

set 488.2 v Start using multi-device NI-488.2 calls for interface v.

help Display the Interactive Control utility online help.

help option Display help information about option, where option is any NI-488.2 or
auxiliary call (for example, help ibwrt or help set).

! Repeat previous function.

- Turn OFF display.

Table 6-3. Syntax for Multi-Device NI-488.2 Calls in Interactive Control (Continued)

Syntax Description

Chapter 6 Interactive Control Utility

NI-488.2 User Manual for Windows 6-10 ni.com

Status Word
In the Interactive Control utility, all NI-488.2 calls (except ibfind and
ibdev) return the status word ibsta in two forms: a hex value in square
brackets and a list of mnemonics in parentheses. In the following example,
the status word is on the second line, showing that the write operation
completed successfully:

ud0: ibwrt "*IDN?"

[0100] (cmpl)

count: 5

ud0:

For more information about ibsta, refer to Chapter 3, Developing Your
NI-488.2 Application.

Error Information
If an NI-488.2 call completes with an error, the Interactive Control utility
displays the relevant error mnemonic. In the following example, an error
condition EBUS has occurred during a data transfer:

ud0: ibwrt "*IDN?"

[8100] (err cmpl)

error: EBUS

count: 1

ud0:

+ Turn ON display.

n * function Execute function n times where function represents the correct Interactive
Control function syntax.

n * ! Execute previous function n times.

$ filename Execute indirect file where filename is the pathname of a file that contains
Interactive Control functions to be executed.

buffer option Set type of display used for buffers. Valid options are full, brief, ascii,
and off. Default is full.

q Exit or quit.

Table 6-4. Auxiliary Functions in Interactive Control (Continued)

Function Description

Chapter 6 Interactive Control Utility

© National Instruments Corporation 6-11 NI-488.2 User Manual for Windows

In this example, the addressing command bytes could not be transmitted to
the device. This indicates that either the GPIB device is powered off or the
GPIB cable is disconnected.

For a detailed list of the error codes and their meanings, refer to Chapter 4,
Debugging Your Application.

Count Information
When an I/O function completes, the Interactive Control utility displays the
actual number of bytes sent or received, regardless of the existence of an
error condition.

If one of the addresses in an address list is invalid, then the error is EARG
and the Interactive Control utility displays the index of the invalid address
as the count.

The count has a different meaning depending on which NI-488.2 call is
made. For the correct interpretation of the count return, refer to the function
descriptions in the NI-488.2 online help. For instructions on accessing the
online help, refer to the Using the NI-488.2 Documentation section in
About This Manual.

© National Instruments Corporation 7-1 NI-488.2 User Manual for Windows

7
NI-488.2 Programming
Techniques

This chapter describes techniques for using some NI-488.2 calls in your
application.

For more information about each function, refer to the NI-488.2 online
help. For instructions on accessing the online help, refer to the Using the
NI-488.2 Documentation section in About This Manual.

Termination of Data Transfers
GPIB data transfers are terminated either when the GPIB EOI line
is asserted with the last byte of a transfer or when a preconfigured
end-of-string (EOS) character is transmitted. By default, EOI is asserted
with the last byte of writes and the EOS modes are disabled.

You can use the ibeot function to enable or disable the end of transmission
(EOT) mode. If EOT mode is enabled, the GPIB EOI line is asserted when
the last byte of a write is sent out on the GPIB. If it is disabled, the EOI line
is not asserted with the last byte of a write.

You can use the ibeos function to enable, disable, or configure the EOS
modes. EOS mode configuration includes the following information:

• A 7-bit or 8-bit EOS byte.

• EOS comparison method—This indicates whether the EOS byte has
seven or eight significant bits. For a 7-bit EOS byte, the eighth bit of
the EOS byte is ignored.

• EOS write method—If this is enabled, the GPIB EOI line is
automatically asserted when the EOS byte is written to the GPIB. If the
buffer passed into an ibwrt call contains five occurrences of the EOS
byte, the EOI line is asserted as each of the five EOS bytes are written
to the GPIB. If an ibwrt buffer does not contain an occurrence of the
EOS byte, the EOI line is not asserted (unless the EOT mode is
enabled, in which case the EOI line is asserted with the last byte of
the write).

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-2 ni.com

• EOS read method—If this is enabled, ibrd, ibrda, and ibrdf calls
are terminated when the EOS byte is detected on the GPIB, when the
GPIB EOI line is asserted, or when the specified count is reached.
If the EOS read method is disabled, ibrd, ibrda, and ibrdf calls
terminate only when the GPIB EOI line is asserted or the specified
count has been read.

You can use the ibconfig function to configure the software to indicate
whether the GPIB EOI line was asserted when the EOS byte was read in.
Use the IbcEndBitIsNormal option to configure the software to report
only the END bit in ibsta when the GPIB EOI line is asserted. By default,
END is reported in ibsta when either the EOS byte is read in or the EOI
line is asserted during a read.

High-Speed Data Transfers (HS488)
National Instruments has designed a high-speed data transfer protocol for
IEEE 488 called HS488. This protocol increases performance for GPIB
reads and writes up to 8 Mbytes/s, depending on your system.

HS488 is a superset of the IEEE 488 standard; thus, you can mix
IEEE 488.1, IEEE 488.2, and HS488 devices in the same system. If HS488
is enabled, the TNT4882C hardware implements high-speed transfers
automatically when communicating with HS488 instruments. If you
attempt to enable HS488 on a GPIB interface that does not have the
TNT4882C hardware, the ECAP error code is returned.

Enabling HS488
To enable HS488 for your GPIB interface, use the ibconfig function
(option IbcHSCableLength). The value passed to ibconfig should
specify the number of meters of cable in your GPIB configuration. If you
specify a cable length that is much smaller than what you actually use,
the transferred data could become corrupted. If you specify a cable length
longer than what you actually use, the data is transferred successfully,
but more slowly than if you specified the correct cable length.

In addition to using ibconfig to configure your GPIB interface for
HS488, the Controller-In-Charge must send out GPIB command bytes
(interface messages) to configure other devices for HS488 transfers.

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-3 NI-488.2 User Manual for Windows

If you are using device-level calls, the NI-488.2 software automatically
sends the HS488 configuration message to devices. If you enabled the
HS488 protocol in the NI-488.2 Configuration utility, the NI-488.2
software sends out the HS488 configuration message when you use ibdev
to bring a device online. If you call ibconfig to change the GPIB cable
length, the NI-488.2 software sends out the HS488 message again, the next
time you call a device-level function.

If you are using board-level traditional NI-488.2 calls or multi-device
NI-488.2 calls and you want to configure devices for high-speed, you must
send the HS488 configuration messages using ibcmd or SendCmds. The
HS488 configuration message is made up of two GPIB command bytes.
The first byte, the Configure Enable (CFE) message (hex 1F), places all
HS488 devices into their configuration mode. Non-HS488 devices should
ignore this message. The second byte is a GPIB secondary command that
indicates the number of meters of cable in your system. It is called the
Configure (CFGn) message. Because HS488 can operate only with cable
lengths of 1 to 15 m, only CFGn values of 1 through 15 (hex 61 through 6F)
are valid. If the cable length was configured properly in the NI-488.2
Configuration utility, you can determine how many meters of cable are in
your system by calling ibask (option IbaHSCableLength) in your
application. For more information about CFE and CFGn messages, refer to
the Multiline Interface Messages topic in the NI-488.2 online help. For
instructions on accessing the online help, refer to the Using the NI-488.2
Documentation section in About This Manual.

System Configuration Effects on HS488
Maximum HS488 data transfer rates can be limited by your host computer
and GPIB system setup. For example, when using a PC-compatible
computer with PCI bus, the maximum obtainable transfer rate is
8 Mbytes/s, but when using a PC-compatible computer with ISA bus, the
maximum transfer rate obtainable is only 2 Mbytes/s. The same IEEE 488
cabling constraints for a 350 ns T1 delay apply to HS488. As you increase
the amount of cable in your GPIB configuration, the maximum data
transfer rate using HS488 decreases. For example, two HS488 devices
connected by two meters of cable can transfer data faster than four HS488
devices connected by 4 m of cable.

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-4 ni.com

Waiting for GPIB Conditions
You can use the ibwait function to obtain the current ibsta value or to
suspend your application until a specified condition occurs on the GPIB.
If you use ibwait with a parameter of zero, it immediately updates ibsta
and returns. If you want to use ibwait to wait for one or more events to
occur, pass a wait mask to the function. The wait mask should always
include the TIMO event; otherwise, your application is suspended
indefinitely until one of the wait mask events occurs.

Asynchronous Event Notification in Win32
NI-488.2 Applications

Win32 NI-488.2 applications can asynchronously receive event
notifications using the ibnotify function. This function is useful if you
want your application to be notified asynchronously about the occurrence
of one or more GPIB events. For example, you might choose to use
ibnotify if your application only needs to interact with your GPIB device
when it is requesting service. After calling ibnotify, your application
does not need to check the status of your GPIB device. Then, when your
GPIB device requests service, the NI-488.2 driver automatically notifies
your application that the event has occurred by invoking a callback
function. The callback function is registered with the NI-488.2 driver when
the ibnotify call is made.

Calling the ibnotify Function
ibnotify has the following function prototype:

ibnotify (

int ud,// unit descriptor

int mask,// bit mask of GPIB events

GpibNotifyCallback_t Callback,

// callback function

void * RefData// user-defined reference data

)

Both board-level and device-level ibnotify calls are supported by the
NI-488.2 driver. If you are using device-level calls, you call ibnotify
with a device handle for ud and a mask of RQS, CMPL, END, or TIMO.
If you are using board-level calls, you call ibnotify with a board handle
for ud and a mask of any values except RQS or ERR. The ibnotify mask
bits are identical to the ibwait mask bits. In the example of waiting for

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-5 NI-488.2 User Manual for Windows

your GPIB device to request service, you might choose to pass ibnotify
a mask with RQS (for device-level) or SRQI (for board-level).

The callback function that you register with the ibnotify call is invoked
by the NI-488.2 driver when one or more of the mask bits passed to
ibnotify is TRUE. The function prototype of the callback is as follows:

int __stdcall Callback (

int ud,// unit descriptor

int ibsta,// ibsta value

int iberr,// iberr value

long ibcntl,// ibcntl value

void * RefData// user-defined reference data

)

The callback function is passed a unit descriptor, the current values of the
NI-488.2 global variables, and the user-defined reference data that was
passed to the original ibnotify call. The NI-488.2 driver interprets the
return value for the callback as a mask value that is used to automatically
rearm the callback if it is non-zero. For a complete description of
ibnotify, refer to the NI-488.2 online help. For instructions on accessing
the online help, refer to the Using the NI-488.2 Documentation section in
About This Manual.

Note The ibnotify callback is executed in a separate thread of execution from the rest
of your application. If your application will be performing other NI-488.2 operations while
it is using ibnotify, use the per-thread NI-488.2 globals that are provided by the
ThreadIbsta, ThreadIberr, ThreadIbcnt, and ThreadIbcntl functions described
in the Writing Multithreaded Win32 NI-488.2 Applications section of this chapter. In
addition, if your application needs to share global variables with the callback, use a
synchronization primitive (for example, a semaphore) to protect access to any globals. For
more information about the use of synchronization primitives, refer to the documentation
about using Win32 synchronization objects that came with your development tools.

ibnotify Programming Example
The following code is an example of how you can use ibnotify in your
application. Assume that your GPIB device is a multimeter that you
program it to acquire a reading by sending "SEND DATA". The multimeter
requests service when it has a reading ready, and each reading is a floating
point value.

In this example, globals are shared by the Callback thread and the main
thread, and the access of the globals is not protected by synchronization.
In this case, synchronization of access to these globals is not necessary

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-6 ni.com

because of the way they are used in the application: only a single thread is
writing the global values and that thread only adds information (increases
the count or adds another reading to the array of floats).

int __stdcall MyCallback (int ud, int LocalIbsta, int LocalIberr,

long LocalIbcntl, void *RefData);

int ReadingsTaken = 0;

float Readings[1000];

BOOL DeviceError = FALSE;

char expectedResponse = 0x43;

int main()

{

int ud;

// Assign a unique identifier to the device and store it in the

// variable ud. ibdev opens an available device and assigns it to

// access GPIB0 with a primary address of 1, a secondary address of 0,

// a timeout of 10 seconds, the END message enabled, and the EOS mode

// disabled. If ud is less than zero, then print an error message

// that the call failed and exit the program.

ud = ibdev (0,// connect board

 1, // primary address of GPIB device

 0, // secondary address of GPIB device

 T10s, // 10 second I/O timeout

 1, // EOT mode turned on

 0); // EOS mode disabled

if (ud < 0) {

printf ("ibdev failed.\n");

return 0;

}

// Issue a request to the device to send the data. If the ERR bit

// is set in ibsta, then print an error message that the call failed

// and exit the program.

ibwrt (ud, "SEND DATA", 9L);

if (ibsta & ERR) {

printf ("unable to write to device.\n");

return 0;

}

// set up the asynchronous event notification on RQS

ibnotify (ud, RQS, MyCallback, NULL);

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-7 NI-488.2 User Manual for Windows

if (ibsta & ERR) {

printf ("ibnotify call failed.\n");

return 0;

}

while ((ReadingsTaken < 1000) && !(DeviceError)) {

// Your application does useful work here. For example, it

// might process the device readings or do any other useful work.

}

// disable notification

ibnotify (ud, 0, NULL, NULL);

// Call the ibonl function to disable the hardware and software.

ibonl (ud, 0);

return 1;

}

int __stdcall MyCallback (int LocalUd, int LocalIbsta, int LocalIberr,

long LocalIbcntl, void *RefData)

{

char SpollByte;

char ReadBuffer[40];

// If the ERR bit is set in LocalIbsta, then print an error

// message and return.

if (LocalIbsta & ERR) {

printf ("GPIB error %d has occurred. No more callbacks.\n",

LocalIberr);

DeviceError = TRUE;

return 0;

}

// Read the serial poll byte from the device. If the ERR bit is set

// in ibsta, then print an error message and return.

LocalIbsta = ibrsp (LocalUd, &SpollByte);

if (LocalIbsta & ERR) {

printf ("ibrsp failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

// If the returned status byte equals the expected response, then

// the device has valid data to send; otherwise it has a fault

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-8 ni.com

// condition to report.

if (SpollByte != expectedResponse) {

printf("Device returned invalid response. Status byte = 0x%x\n",

 SpollByte);

DeviceError = TRUE;

return 0;

}

// Read the data from the device. If the ERR bit is set in ibsta,

// then print an error message and return.

LocalIbsta = ibrd (LocalUd, ReadBuffer, 40L);

if (LocalIbsta & ERR) {

printf ("ibrd failed. No more callbacks.\n");

DeviceError = TRUE;

return 0;

}

// The string returned by ibrd is a binary string whose length is

// specified by the byte count in ibcntl. However, many GPIB

// instruments return ASCII data strings and this example makes this

// assumption. Because of this, it is possible to add a NULL

// character to the end of the data received and use the printf()

// function to display the ASCII data. The following code

// illustrates that.

ReadBuffer[ibcntl] = ‘\0’;

// Convert the data into a numeric value.

sscanf (ReadBuffer, "%f", &Readings[ReadingsTaken]);

// Display the data.

printf(“Reading : %f\n”, Readings[ReadingsTaken]);

ReadingsTaken += 1;

if (ReadingsTaken >= 1000) {

return 0;

}

else {

// Issue a request to the device to send the data and rearm

// callback on RQS.

LocalIbsta = ibwrt (LocalUd, "SEND DATA", 9L);

if (LocalIbsta & ERR) {

printf ("ibwrt failed. No more callbacks.\n");

DeviceError = TRUE;

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-9 NI-488.2 User Manual for Windows

return 0;

}

else {

return RQS;

}

}

}

Writing Multithreaded Win32 NI-488.2 Applications
If you are writing a multithreaded NI-488.2 application and you plan to
make all of your NI-488.2 calls from a single thread, you can safely
continue to use the traditional NI-488.2 global variables (ibsta, iberr,
ibcnt, ibcntl). The NI-488.2 global variables are defined on a
per-process basis, so each process accesses its own copy of the NI-488.2
globals.

If you are writing a multithreaded NI-488.2 application and you plan to
make NI-488.2 calls from more than a single thread, you cannot safely
continue to use the traditional NI-488.2 global variables without some form
of synchronization (for example, a semaphore). To understand why, refer to
the following example.

Assume that a process has two separate threads that make NI-488.2 calls,
thread #1 and thread #2. Just as thread #1 is about to examine one of the
NI-488.2 globals, it gets preempted and thread #2 is allowed to run.
Thread #2 proceeds to make several NI-488.2 calls that automatically
update the NI-488.2 globals. Later, when thread #1 is allowed to run, the
NI-488.2 global that it is ready to examine is no longer in a known state
and its value is no longer reliable.

The previous example illustrates a well-known multithreading problem.
It is unsafe to access process-global variables from multiple threads of
execution. You can avoid this problem in two ways:

• Use synchronization to protect access to process-global variables.

• Do not use process-global variables.

If you choose to implement the synchronization solution, you must ensure
that the code making NI-488.2 calls and examining the NI-488.2 globals
modified by a NI-488.2 call is protected by a synchronization primitive. For
example, each thread might acquire a semaphore before making a NI-488.2
call and then release the semaphore after examining the NI-488.2 globals

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-10 ni.com

modified by the call. For more information about the use of synchronization
primitives, refer to the documentation about using Win32 synchronization
objects that came with your development tools.

If you choose not to use process-global variables, you can access per-thread
copies of the NI-488.2 global variables using a special set of NI-488.2 calls.
Whenever a thread makes a NI-488.2 call, the driver keeps a private copy
of the NI-488.2 globals for that thread. The driver keeps a separate private
copy for each thread. The following code shows the set of functions you can
use to access these per-thread NI-488.2 global variables:

int ThreadIbsta();// return thread-specific ibsta

int ThreadIberr();// return thread-specific iberr

int ThreadIbcnt();// return thread-specific ibcnt

long ThreadIbcntl();// return thread-specific ibcntl

In your application, instead of accessing the per-process NI-488.2 globals,
substitute a call to get the corresponding per-thread NI-488.2 global. For
example, the following line of code,

if (ibsta & ERR)

could be replaced by,

if (ThreadIbsta() & ERR)

A quick way to convert your application to use per-thread NI-488.2 globals
is to add the following #define lines at the top of your C file:

#define ibstaThreadIbsta()

#define iberrThreadIberr()

#define ibcntThreadIbcnt()

#define ibcntlThreadIbcntl()

Note If you are using ibnotify in your application (see the Asynchronous Event
Notification in Win32 NI-488.2 Applications section of this chapter), the ibnotify
callback is executed in a separate thread that is created by the NI-488.2 driver. Therefore,
if your application makes NI-488.2 calls from the ibnotify callback function and makes
NI-488.2 calls from other places, you must use the ThreadIbsta, ThreadIberr,
ThreadIbcnt, and ThreadIbcntl functions described in this section, instead of the
per-process NI-488.2 globals.

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-11 NI-488.2 User Manual for Windows

Device-Level Calls and Bus Management
The device-level traditional NI-488.2 calls are designed to perform all of
the GPIB management for your application. However, the NI-488.2 driver
can handle bus management only when the GPIB interface is CIC
(Controller-In-Charge). Only the CIC is able to send command bytes to the
devices on the bus to perform device addressing or other bus management
activities.

Use one of the following methods to make your GPIB interface the CIC:

• If your GPIB interface is configured as the System Controller (default),
it automatically makes itself the CIC by asserting the IFC line the first
time you make a device-level call.

• If your setup includes more than one Controller, or if your GPIB
interface is not configured as the System Controller, use the CIC
Protocol method. To use the protocol, issue the ibconfig function
(option IbcCICPROT) or use the NI-488.2 Configuration utility to
activate the CIC protocol. If the interface is not CIC, and you make a
device-level call with the CIC protocol enabled, the following
sequence occurs:

1. The GPIB interface asserts the SRQ line.

2. The current CIC serial polls the interface.

3. The interface returns a response byte of hex 42.

4. The current CIC passes control to the GPIB interface.

If the current CIC does not pass control, the NI-488.2 driver returns the
ECIC error code to your application. This error can occur if the current CIC
does not understand the CIC protocol. If this happens, you could send a
device-specific command requesting control for the GPIB interface. Then,
use a board-level ibwait command to wait for CIC.

Talker/Listener Applications
Although designed for Controller-In-Charge applications, you can also use
the NI-488.2 software in most non-Controller situations. These situations
are known as Talker/Listener applications because the interface is not the
GPIB Controller.

A Talker/Listener application typically uses ibwait with a mask of 0 to
monitor the status of the interface. Then, based on the status bits set in
ibsta, the application takes whatever action is appropriate. For example,

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-12 ni.com

the application could monitor the status bits TACS (Talker Active State) and
LACS (Listener Active State) to determine when to send data to or receive
data from the Controller. The application could also monitor the DCAS
(Device Clear Active State) and DTAS (Device Trigger Active State) bits
to determine if the Controller has sent the device clear (DCL or SDC) or
trigger (GET) messages to the interface. If the application detects a device
clear from the Controller, it might reset the internal state of message
buffers. If it detects a trigger message from the Controller, the application
might begin an operation, such as taking a voltage reading if the application
is actually acting as a voltmeter.

Serial Polling
You can use serial polling to obtain specific information from GPIB
devices when they request service. When the GPIB SRQ line is asserted,
it signals the Controller that a service request is pending. The Controller
must then determine which device asserted the SRQ line and respond
accordingly. The most common method for SRQ detection and servicing is
the serial poll. This section describes how to set up your application to
detect and respond to service requests from GPIB devices.

Service Requests from IEEE 488 Devices
IEEE 488 devices request service from the GPIB Controller by asserting
the GPIB SRQ line. When the Controller acknowledges the SRQ, it serial
polls each open device on the bus to determine which device requested
service. Any device requesting service returns a status byte with bit 6 set
and then unasserts the SRQ line. Devices not requesting service return a
status byte with bit 6 cleared. Manufacturers of IEEE 488 devices use lower
order bits to communicate the reason for the service request or to
summarize the state of the device.

Service Requests from IEEE 488.2 Devices
The IEEE 488.2 standard refined the bit assignments in the status byte. In
addition to setting bit 6 when requesting service, IEEE 488.2 devices also
use two other bits to specify their status. Bit 4, the Message Available bit
(MAV), is set when the device is ready to send previously queried data.
Bit 5, the Event Status bit (ESB), is set if one or more of the enabled
IEEE 488.2 events occurs. These events include power-on, user request,
command error, execution error, device dependent error, query error,
request control, and operation complete. The device can assert SRQ when
ESB or MAV are set, or when a manufacturer-defined condition occurs.

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-13 NI-488.2 User Manual for Windows

Automatic Serial Polling
You can enable automatic serial polling if you want your application to
conduct a serial poll automatically when the SRQ line is asserted. The
autopolling procedure occurs as follows:

1. To enable autopolling, use the configuration function, ibconfig, with
option IbcAUTOPOLL, or the NI-488.2 Configuration utility.
(Autopolling is enabled by default.)

2. When the SRQ line is asserted, the driver automatically serial polls the
open devices.

3. Each positive serial poll response (bit 6 or hex 40 is set) is stored in a
queue associated with the device that sent it. The RQS bit of the device
status word, ibsta, is set.

4. The polling continues until SRQ is unasserted or an error condition is
detected.

5. To empty the queue, use the ibrsp function. ibrsp returns the first
queued response. Other responses are read in first-in-first-out (FIFO)
fashion. If the RQS bit of the status word is not set when ibrsp is
called, a serial poll is conducted and returns the response received.
Empty the queue as soon as an automatic serial poll occurs, because
responses might be discarded if the queue is full.

6. If the RQS bit of the status word is still set after ibrsp is called, the
response byte queue contains at least one more response byte. If this
happens, continue to call ibrsp until RQS is cleared.

Stuck SRQ State
If autopolling is enabled and the GPIB interface detects an SRQ, the driver
serial polls all open devices connected to that interface. The serial poll
continues until either SRQ unasserts or all the devices have been polled.

If no device responds positively to the serial poll, or if SRQ remains in
effect because of a faulty instrument or cable, a stuck SRQ state is in effect.
If this happens during an ibwait for RQS, the driver reports the ESRQ
error. If the stuck SRQ state happens, no further polls are attempted until an
ibwait for RQS is made. When ibwait is issued, the stuck SRQ state is
terminated and the driver attempts a new set of serial polls.

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-14 ni.com

Autopolling and Interrupts
If autopolling and interrupts are both enabled, the NI-488.2 software can
perform autopolling after any device-level NI-488.2 call provided that no
GPIB I/O is currently in progress. In this case, an automatic serial poll can
occur even when your application is not making any calls to the NI-488.2
software. Autopolling can also occur when a device-level ibwait for RQS
is in progress. Autopolling is not allowed when an application calls a
board-level traditional or multi-device NI-488.2 call, or the stuck SRQ
(ESRQ) condition occurs.

Windows Me/98/95
In Windows Me/98/95, you can use your GPIB interface without interrupts,
but the NI-488.2 software performance is significantly slower without
interrupts. For example, transfer sizes between 1 and 10 bytes transfer at a
rate of only 2% of the transfer rate with enabled interrupts. As the transfer
size increases, the performance degradation decreases slightly, but it
remains a significant problem for all transfers under 1 Mbyte. For
instructions on how to assign an interrupt to your GPIB interface if one
was not assigned, refer to the Enabling Interrupts section in Appendix D,
Windows Me/98/95: Troubleshooting and Common Questions.

Windows 2000/NT
The NI-488.2 software for Windows 2000/NT does not function properly
if interrupts are disabled.

SRQ and Serial Polling with Device-Level Traditional NI-488.2 Calls
You can use the device-level traditional NI-488.2 call ibrsp to conduct a
serial poll. ibrsp conducts a single serial poll and returns the serial poll
response byte to the application. If automatic serial polling is enabled, the
application can use ibwait to suspend program execution until RQS
appears in the status word, ibsta. The program can then call ibrsp to
obtain the serial poll response byte.

The following example shows you how to use the ibwait and ibrsp
functions in a typical SRQ servicing situation when automatic serial polling
is enabled:

#include "decl-32.h"

char GetSerialPollResponse (int DeviceHandle)

{

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-15 NI-488.2 User Manual for Windows

char SerialPollResponse = 0;

ibwait (DeviceHandle, TIMO | RQS);

if (ibsta & RQS) {

printf ("Device asserted SRQ.\n");

/* Use ibrsp to retrieve the serial poll response. */

ibrsp (DeviceHandle, &SerialPollResponse);

}

return SerialPollResponse;

}

SRQ and Serial Polling with Multi-Device NI-488.2 Calls
The NI-488.2 software includes a set of multi-device NI-488.2 calls that
you can use to conduct SRQ servicing and serial polling. Calls pertinent to
SRQ servicing and serial polling are AllSpoll, ReadStatusByte,
FindRQS, TestSRQ, and WaitSRQ. Following are descriptions of each of
the calls:

• AllSpoll can serial poll multiple devices with a single call. It places
the status bytes from each polled instrument into a predefined array.
Then, you must check the RQS bit of each status byte to determine
whether that device requested service.

• ReadStatusByte is similar to AllSpoll, except that it only serial
polls a single device. It is also similar to the device-level NI-488.2
ibrsp function.

• FindRQS serial polls a list of devices until it finds a device that is
requesting service or until it has polled all of the devices on the list.
The call returns the index and status byte value of the device requesting
service.

• TestSRQ determines whether the SRQ line is asserted and returns to
the program immediately.

• WaitSRQ is similar to TestSRQ, except that WaitSRQ suspends the
application until either SRQ is asserted or the timeout period is
exceeded.

The following examples use these calls to detect SRQ and then determine
which device requested service. In these examples, three devices are
present on the GPIB at addresses 3, 4, and 5, and the GPIB interface is
designated as bus index 0. The first example uses FindRQS to determine
which device is requesting service, and the second example uses AllSpoll
to serial poll all three devices. Both examples use WaitSRQ to wait for the
GPIB SRQ line to be asserted.

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-16 ni.com

Example 1: Using FindRQS
This example shows you how to use FindRQS to find the first device that
is requesting service:

void GetASerialPollResponse (char *DevicePad,

 char *DeviceResponse)

{

char SerialPollResponse = 0;

int WaitResult;

Addr4882_t Addrlist[4] = {3,4,5,NOADDR};

WaitSRQ (0, &WaitResult);

if (WaitResult) {

printf ("SRQ is asserted.\n");

FindRQS (0, AddrList, &SerialPollResponse);

if (!(ibsta & ERR)) {

printf ("Device at pad %x returned byte

%x.\n", AddrList[ibcnt],(int)

SerialPollResponse);

*DevicePad = AddrList[ibcnt];

*DeviceResponse = SerialPollResponse;

}

}

return;

}

Example 2: Using AllSpoll
This example shows you how to use AllSpoll to serial poll three devices
with a single call:

void GetAllSerialPollResponses (Addr4882_t AddrList[],

short ResponseList[])

{

int WaitResult;

WaitSRQ (0, &WaitResult);

if (WaitResult) {

printf ("SRQ is asserted.\n");

AllSpoll (0, AddrList, ResponseList);

if (!(ibsta & ERR)) {

for (i = 0; AddrList[i] != NOADDR; i++) {

printf ("Device at pad %x returned byte

%x.\n", AddrList[i], ResponseList[i]);

}

}

}

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-17 NI-488.2 User Manual for Windows

return;

}

Parallel Polling
Although parallel polling is not widely used, it is a useful method for
obtaining the status of more than one device at the same time. The
advantage of parallel polling is that a single parallel poll can easily check
up to eight individual devices at once. In comparison, eight separate serial
polls would be required to check eight devices for their serial poll response
bytes. The value of the individual status bit (ist) determines the parallel
poll response.

Implementing a Parallel Poll
You can implement parallel polling with either the traditional or
multi-device NI-488.2 calls. If you use multi-device NI-488.2 calls to
execute parallel polls, you do not need extensive knowledge of the parallel
polling messages. However, you should use the traditional NI-488.2 calls
for parallel polling when the GPIB interface is not the Controller, and the
interface must configure itself for a parallel poll and set its own individual
status bit (ist).

Parallel Polling with Traditional NI-488.2 Calls
Complete the following steps to implement parallel polling using
traditional NI-488.2 calls. Each step contains example code.

1. Configure the device for parallel polling using the ibppc function,
unless the device can configure itself for parallel polling.

ibppc requires an 8-bit value to designate the data line number, the
ist sense, and whether the function configures the device for the
parallel poll. The bit pattern is as follows:

0 1 1 E S D2 D1 D0

E is 1 to disable parallel polling and 0 to enable parallel polling for that
particular device.

S is 1 if the device is to assert the assigned data line when ist is 1, and
0 if the device is to assert the assigned data line when ist is 0.

D2 through D0 determine the number of the assigned data line. The
physical line number is the binary line number plus one. For example,
DIO3 has a binary bit pattern of 010.

Chapter 7 NI-488.2 Programming Techniques

NI-488.2 User Manual for Windows 7-18 ni.com

The following example code configures a device for parallel polling
using traditional NI-488.2 calls. The device asserts DIO7 if its ist
is 0.

In this example, the ibdev command opens a device that has a primary
address of 3, has no secondary address, has a timeout of 3 s, asserts
EOI with the last byte of a write operation, and has EOS characters
disabled.

The following call configures the device to respond to the poll on DIO7
and to assert the line in the case when its ist is 0. Pass the binary bit
pattern, 0110 0110 or hex 66, to ibppc.

#include "decl-32.h"

char ppr;

dev = ibdev(0,3,0,T3s,1,0);

ibppc(dev, 0x66);

If the GPIB interface configures itself for a parallel poll, you should
still use the ibppc function. Pass the interface index or an interface
unit descriptor value as the first argument in ibppc. Also, if the
individual status bit (ist) of the interface needs to be changed, use the
ibist function.

In the following example, the GPIB interface is to configure itself to
participate in a parallel poll. It asserts DIO5 when ist is 1 if a parallel
poll is conducted.

ibppc(0, 0x6C);

ibist(0, 1);

2. Conduct the parallel poll using ibrpp and check the response for a
certain value. The following example code performs the parallel poll
and compares the response to hex 10, which corresponds to DIO5. If
that bit is set, the ist of the device is 1.

ibrpp(dev, &ppr);

if (ppr & 0x10) printf("ist = 1\n");

3. Unconfigure the device for parallel polling with ibppc. Notice that
any value having the parallel poll disable bit set (bit 4) in the bit pattern
disables the configuration, so you can use any value between hex 70
and 7E.

ibppc(dev, 0x70);

Chapter 7 NI-488.2 Programming Techniques

© National Instruments Corporation 7-19 NI-488.2 User Manual for Windows

Parallel Polling with Multi-Device NI-488.2 Calls
Complete the following steps to implement parallel polling the using
multi-device NI-488.2 calls. Each step contains example code.

1. Configure the device for parallel polling using the PPollConfig call,
unless the device can configure itself for parallel polling. The
following example configures a device at address 3 to assert data line 5
(DIO5) when its ist value is 1.

#include "decl-32.h"

char response;

Addr4882_t AddressList[2];

/* The following command clears the GPIB. */

SendIFC(0);

/* The value of sense is compared with the ist bit

of the device and determines whether the data

line is asserted.*/

PPollConfig(0,3,5,1);

2. Conduct the parallel poll using PPoll, store the response, and check
the response for a certain value. In the following example, because
DIO5 is asserted by the device if ist is 1, the program checks bit 4
(hex 10) in the response to determine the value of ist.

PPoll(0, &response);

/* If response has bit 4 (hex 10) set, the ist bit

of the device at that time is equal to 1. If

it does not appear, the ist bit is equal to 0.

Check the bit in the following statement. */

if (response & 0x10) {

printf("The ist equals 1.\n");

}

else {

printf("The ist equals 0.\n");

}

3. Unconfigure the device for parallel polling using PPollUnconfig, as
shown in the following example. In this example, the NOADDR constant
must appear at the end of the array to signal the end of the address list.
If NOADDR is the only value in the array, all devices receive the parallel
poll disable message.

AddressList[0] = 3;

AddressList[1] = NOADDR;

PPollUnconfig(0, AddressList);

© National Instruments Corporation A-1 NI-488.2 User Manual for Windows

A
GPIB Basics

The ANSI/IEEE Standard 488.1-1987, also known as General Purpose
Interface Bus (GPIB), describes a standard interface for communication
between instruments and controllers from various vendors. It contains
information about electrical, mechanical, and functional specifications.
GPIB is a digital, 8-bit parallel communications interface with data transfer
rates of 1 Mbyte/s and higher, using a three-wire handshake. The bus
supports one System Controller, usually a computer, and up to 14 additional
instruments. The ANSI/IEEE Standard 488.2-1992 extends IEEE 488.1 by
defining a bus communication protocol, a common set of data codes and
formats, and a generic set of common device commands.

Talkers, Listeners, and Controllers
GPIB devices can be Talkers, Listeners, or Controllers. A Talker sends out
data messages. Listeners receive data messages. The Controller, usually a
computer, manages the flow of information on the bus. It defines the
communication links and sends GPIB commands to devices.

Some devices are capable of playing more than one role. A digital
voltmeter, for example, can be a Talker and a Listener. If your system has a
National Instruments GPIB interface and software installed, it can function
as a Talker, Listener, and Controller.

Controller-In-Charge and System Controller
You can have multiple Controllers on the GPIB, but only one Controller at
a time can be the active Controller, or Controller-In-Charge (CIC). The CIC
can be either active or inactive (standby). Control can pass from the current
CIC to an idle Controller, but only the System Controller, usually a GPIB
interface, can make itself the CIC.

Appendix A GPIB Basics

NI-488.2 User Manual for Windows A-2 ni.com

GPIB Addressing
All GPIB devices and interfaces must be assigned a unique GPIB address.
A GPIB address is made up of two parts: a primary address and an optional
secondary address.

The primary address is a number in the range 0 to 30. The Controller uses
this address to form a talk or listen address that is sent over the GPIB when
communicating with a device.

A talk address is formed by setting bit 6, the TA (Talk Active) bit of the
GPIB address. A listen address is formed by setting bit 5, the LA (Listen
Active) bit of the GPIB address. For example, if a device is at address 1,
the Controller sends hex 41 (address 1 with bit 6 set) to make the device a
Talker. Because the Controller is usually at primary address 0, it sends
hex 20 (address 0 with bit 5 set) to make itself a Listener. Figure A-1 shows
the configuration of the GPIB address bits.

Figure A-1. GPIB Address Bits

With some devices, you can use secondary addressing. A secondary
address is a number in the range hex 60 to hex 7E. When you use secondary
addressing, the Controller sends the primary talk or listen address of the
device followed by the secondary address of the device.

Sending Messages across the GPIB
Devices on the bus communicate by sending messages. Signals and lines
transfer these messages across the GPIB interface, which consists of
16 signal lines and 8 ground return (shield drain) lines. The 16 signal lines
are discussed in the following sections.

Data Lines
Eight data lines, DIO1 through DIO8, carry both data and command
messages.

Bit Position 7 6 5 4 3 2 1 0

Meaning 0 TA LA GPIB Primary Address
(range 0–30)

Appendix A GPIB Basics

© National Instruments Corporation A-3 NI-488.2 User Manual for Windows

Handshake Lines
Three hardware handshake lines asynchronously control the transfer of
message bytes between devices. This process is a three-wire interlocked
handshake, and it guarantees that devices send and receive message bytes
on the data lines without transmission error. Table A-1 summarizes the
GPIB handshake lines.

Interface Management Lines
Five hardware lines manage the flow of information across the bus.
Table A-2 summarizes the GPIB interface management lines.

Table A-1. GPIB Handshake Lines

Line Description

NRFD
(not ready for data)

Listening device is ready/not ready to receive a
message byte. Also used by the Talker to signal
high-speed GPIB transfers.

NDAC
(not data accepted)

Listening device has/has not accepted a message
byte.

DAV
(data valid)

Talking device indicates signals on data lines are
stable (valid) data.

Table A-2. GPIB Interface Management Lines

Line Description

ATN
(attention)

Controller drives ATN true when it sends
commands and false when it sends data messages.

IFC
(interface clear)

System Controller drives the IFC line to initialize
the bus and make itself CIC.

REN
(remote enable)

System Controller drives the REN line to place
devices in remote or local program mode.

SRQ
(service request)

Any device can drive the SRQ line to
asynchronously request service from the Controller.

EOI
(end or identify)

Talker uses the EOI line to mark the end of a data
message. Controller uses the EOI line when it
conducts a parallel poll.

© National Instruments Corporation B-1 NI-488.2 User Manual for Windows

B
Status Word Conditions

This appendix gives a detailed description of the conditions reported in the
status word, ibsta.

For information about how to use ibsta in your application program, refer
to the NI-488.2 online help. For instructions on accessing the online help,
refer to the Using the NI-488.2 Documentation section in About This
Manual.

Each bit in ibsta can be set for device calls (dev), board calls (brd), or both
(dev, brd). Table B-1 shows the status word layout.

Table B-1. Status Word Layout

Mnemonic Bit Position Hex Value Type Description

ERR 15 8000 dev, brd NI-488.2 error

TIMO 14 4000 dev, brd Time limit exceeded

END 13 2000 dev, brd END or EOS detected

SRQI 12 1000 brd SRQ interrupt received

RQS 11 800 dev Device requesting service

CMPL 8 100 dev, brd I/O completed

LOK 7 80 brd Lockout State

REM 6 40 brd Remote State

CIC 5 20 brd Controller-In-Charge

ATN 4 10 brd Attention is asserted

TACS 3 8 brd Talker

LACS 2 4 brd Listener

DTAS 1 2 brd Device Trigger State

DCAS 0 1 brd Device Clear State

Appendix B Status Word Conditions

NI-488.2 User Manual for Windows B-2 ni.com

ERR (dev, brd)
ERR is set in the status word following any call that results in an error. You
can determine the particular error by examining the error variable iberr.
Appendix C, Error Codes and Solutions, describes error codes that are
recorded in iberr along with possible solutions. ERR is cleared following
any call that does not result in an error.

TIMO (dev, brd)
TIMO indicates that the timeout period has expired. TIMO is set in the
status word following any synchronous I/O functions (for example, ibcmd,
ibrd, ibwrt, Receive, Send, and SendCmds) if the timeout period
expires before the I/O operation has completed. TIMO is also set in the
status word following an ibwait or ibnotify call if the TIMO bit is set
in the mask parameter and the timeout period expires before any other
specified mask bit condition occurs. TIMO is cleared in all other
circumstances.

END (dev, brd)
END indicates either that the GPIB EOI line has been asserted or that the
EOS byte has been received, if the software is configured to terminate a
read on an EOS byte. If the GPIB interface is performing a shadow
handshake as a result of the ibgts function, any other function can return
a status word with the END bit set if the END condition occurs before or
during that call. END is cleared when any I/O operation is initiated.

Some applications might need to know the exact I/O read termination mode
of a read operation—EOI by itself, the EOS character by itself, or EOI
plus the EOS character. You can use the ibconfig function (option
IbcEndBitIsNormal) to enable a mode in which the END bit is set only
when EOI is asserted. In this mode, if the I/O operation completes because
of the EOS character by itself, END is not set. The application should check
the last byte of the received buffer to see if it is the EOS character.

Appendix B Status Word Conditions

© National Instruments Corporation B-3 NI-488.2 User Manual for Windows

SRQI (brd)
SRQI indicates that a GPIB device is requesting service. SRQI is set
whenever the GPIB interface is CIC, the GPIB SRQ line is asserted, and the
automatic serial poll capability is disabled. SRQI is cleared either when the
GPIB interface ceases to be the CIC or when the GPIB SRQ line is
unasserted.

RQS (dev)
RQS appears in the status word only after a device-level call and indicates
that the device is requesting service. RQS is set whenever one or more
positive serial poll response bytes have been received from the device. A
positive serial poll response byte always has bit 6 asserted. Automatic serial
polling must be enabled (it is enabled by default) for RQS to automatically
appear in ibsta. You can also wait for a device to request service
regardless of the state of automatic serial polling by calling ibwait with a
mask that contains RQS. Do not issue an ibwait call on RQS for a device
that does not respond to serial polls. Use ibrsp to acquire the serial poll
response byte that was received. RQS is cleared when all of the stored serial
poll response bytes have been reported to you through the ibrsp function.

CMPL (dev, brd)
CMPL indicates the condition of I/O operations. It is set whenever an I/O
operation is complete. CMPL is cleared while the I/O operation is in
progress.

LOK (brd)
LOK indicates whether the interface is in a lockout state. While LOK is set,
the EnableLocal or ibloc call is inoperative for that interface. LOK is
set whenever the GPIB interface detects that the Local Lockout (LLO)
message has been sent either by the GPIB interface or by another
Controller. LOK is cleared when the System Controller unasserts the
Remote Enable (REN) GPIB line.

Appendix B Status Word Conditions

NI-488.2 User Manual for Windows B-4 ni.com

REM (brd)
REM indicates whether the interface is in the remote state. REM is set
whenever the Remote Enable (REN) GPIB line is asserted and the GPIB
interface detects that its listen address has been sent either by the GPIB
interface or by another Controller. REM is cleared in the following
situations:

• When REN becomes unasserted.

• When the GPIB interface as a Listener detects that the Go to Local
(GTL) command has been sent either by the GPIB interface or by
another Controller.

• When the ibloc function is called while the LOK bit is cleared in the
status word.

CIC (brd)
CIC indicates whether the GPIB interface is the Controller-In-Charge. CIC
is set when the SendIFC or ibsic call is executed either while the GPIB
interface is System Controller or when another Controller passes control to
the GPIB interface. CIC is cleared either when the GPIB interface detects
Interface Clear (IFC) from the System Controller or when the GPIB
interface passes control to another device.

ATN (brd)
ATN indicates the state of the GPIB Attention (ATN) line. ATN is set
whenever the GPIB ATN line is asserted, and it is cleared when the ATN
line is unasserted.

TACS (brd)
TACS indicates whether the GPIB interface is addressed as a Talker.
TACS is set whenever the GPIB interface detects that its talk address
(and secondary address, if enabled) has been sent either by the GPIB
interface itself or by another Controller. TACS is cleared whenever the
GPIB interface detects the Untalk (UNT) command, its own listen address,
a talk address other than its own talk address, or Interface Clear (IFC).

Appendix B Status Word Conditions

© National Instruments Corporation B-5 NI-488.2 User Manual for Windows

LACS (brd)
LACS indicates whether the GPIB interface is addressed as a Listener.
LACS is set whenever the GPIB interface detects that its listen address
(and secondary address, if enabled) has been sent either by the GPIB
interface itself or by another Controller. LACS is also set whenever the
GPIB interface shadow handshakes as a result of the ibgts function.
LACS is cleared whenever the GPIB interface detects the Unlisten (UNL)
command, its own talk address, Interface Clear (IFC), or that the ibgts
function has been called without shadow handshake.

DTAS (brd)
DTAS indicates whether the GPIB interface has detected a device trigger
command. DTAS is set whenever the GPIB interface, as a Listener, detects
that the Group Execute Trigger (GET) command has been sent by another
Controller. DTAS is cleared on any call immediately following an ibwait
call, if the DTAS bit is set in the ibwait mask parameter.

DCAS (brd)
DCAS indicates whether the GPIB interface has detected a device clear
command. DCAS is set whenever the GPIB interface detects that the
Device Clear (DCL) command has been sent by another Controller, or
whenever the GPIB interface as a Listener detects that the Selected Device
Clear (SDC) command has been sent by another Controller.

If you use the ibwait or ibnotify function to wait for DCAS and the
wait is completed, DCAS is cleared from ibsta after the next NI-488.2
call. The same is true of reads and writes. If you call a read or write function
such as ibwrt or Send, and DCAS is set in ibsta, the I/O operation is
aborted. DCAS is cleared from ibsta after the next NI-488.2 call.

© National Instruments Corporation C-1 NI-488.2 User Manual for Windows

C
Error Codes and Solutions

This appendix lists a description of each error, some conditions under
which it might occur, and possible solutions.

Table C-1 lists the GPIB error codes.

Table C-1. GPIB Error Codes

Error
Mnemonic

iberr
Value Meaning

EDVR 0 System error

ECIC 1 Function requires GPIB interface to be CIC

ENOL 2 No Listeners on the GPIB

EADR 3 GPIB interface not addressed correctly

EARG 4 Invalid argument to function call

ESAC 5 GPIB interface not System Controller as
required

EABO 6 I/O operation aborted (timeout)

ENEB 7 Nonexistent GPIB interface

EDMA 8 DMA error

EOIP 10 Asynchronous I/O in progress

ECAP 11 No capability for operation

EFSO 12 File system error

EBUS 14 GPIB bus error

ESTB 15 Serial poll status byte queue overflow

ESRQ 16 SRQ stuck in ON position

ETAB 20 Table problem

Appendix C Error Codes and Solutions

NI-488.2 User Manual for Windows C-2 ni.com

EDVR (0)
EDVR is returned when the interface or device name passed to ibfind,
or the interface index passed to ibdev, cannot be accessed. The global
variable ibcntl contains an error code. This error occurs when you try to
access an interface or device that is not installed or configured properly.

EDVR is also returned if an invalid unit descriptor is passed to any
traditional NI-488.2 call.

Solutions
Possible solutions for this error are as follows:

• Use ibdev to open a device without specifying its symbolic name.

• Use only device or interface names that are configured in the NI-488.2
Configuration utility as parameters to the ibfind function.

• Use the NI-488.2 Troubleshooting Wizard to ensure that each interface
you want to access is working properly, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»
Explore GPIB.

2. Select Help»Troubleshooting»NI-488.2 Troubleshooting
Wizard.

The Troubleshooting Wizard tests your GPIB interface and
displays the results.

• Use the unit descriptor returned from ibdev or ibfind as the first
parameter in subsequent traditional NI-488.2 calls. Examine the
variable before the failing function to make sure its value has not been
corrupted.

• For more troubleshooting information, refer to the Troubleshooting
EDVR Error Conditions section in Appendix D, Windows Me/98/95:
Troubleshooting and Common Questions.

ECIC (1)
ECIC is returned when one of the following board functions is called while
the interface is not CIC:

• Any device-level traditional NI-488.2 calls that affect the GPIB.

• Any board-level traditional NI-488.2 calls that issue GPIB command
bytes: ibcmd, ibcmda, ibln, and ibrpp.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-3 NI-488.2 User Manual for Windows

• ibcac and ibgts.

• Any NI-488.2 multi-device calls that issue GPIB command bytes:
SendCmds, PPoll, Send, and Receive.

Solutions
Possible solutions for this error are as follows:

• Use ibsic or SendIFC to make the GPIB interface become CIC on
the GPIB.

• Use ibrsc 1 to make sure your GPIB interface is configured as
System Controller.

• In multiple CIC situations, always be certain that the CIC bit appears
in the status word ibsta before attempting these calls. If it does not
appear, you can perform an ibwait (for CIC) call to delay further
processing until control is passed to the interface.

ENOL (2)
ENOL usually occurs when a write operation is attempted with no
Listeners addressed. For a device write, ENOL indicates that the GPIB
address configured for that device in the software does not match the GPIB
address of any device connected to the bus, that the GPIB cable is not
connected to the device, or that the device is not powered on.

ENOL can occur in situations where the GPIB interface is not the CIC and
the Controller asserts ATN before the write call in progress has ended.

Solutions
Possible solutions for this error are as follows:

• Make sure that the GPIB address of your device matches the GPIB
address of the device to which you want to write data.

• Use the appropriate hex code in ibcmd to address your device.

• Check your cable connections and make sure at least two-thirds of
your devices are powered on.

• Call ibpad (or ibsad, if necessary) to match the configured address
to the device switch settings.

Appendix C Error Codes and Solutions

NI-488.2 User Manual for Windows C-4 ni.com

EADR (3)
EADR occurs when the GPIB interface is CIC and is not properly
addressing itself before read and write functions. This error is usually
associated with board-level functions.

EADR is also returned by the function ibgts when the shadow-handshake
feature is requested and the GPIB ATN line is already unasserted. In this
case, the shadow handshake is not possible and the error is returned to
notify you of that fact.

Solutions
Possible solutions for this error are as follows:

• Make sure that the GPIB interface is addressed correctly before calling
ibrd, ibwrt, RcvRespMsg, or SendDataBytes.

• Avoid calling ibgts except immediately after an ibcmd call.
(ibcmd causes ATN to be asserted.)

EARG (4)
EARG results when an invalid argument is passed to a function call.
The following are some examples:

• ibtmo called with a value not in the range 0 through 17.

• ibeos called with meaningless bits set in the high byte of the second
parameter.

• ibpad or ibsad called with invalid addresses.

• ibppc called with invalid parallel poll configurations.

• A board-level traditional NI-488.2 call made with a valid device
descriptor, or a device-level traditional NI-488.2 call made with a
board descriptor.

• A multi-device NI-488.2 call made with an invalid address.

• PPollConfig called with an invalid data line or sense bit.

Solutions
Possible solutions for this error are as follows:

• Make sure that the parameters passed to the NI-488.2 call are valid.

• Do not use a device descriptor in a board function or vice-versa.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-5 NI-488.2 User Manual for Windows

ESAC (5)
ESAC results when ibsic, ibsre, SendIFC, or EnableRemote is called
when the GPIB interface does not have System Controller capability.

Solutions
Give the GPIB interface System Controller capability by calling ibrsc 1
or by using the NI-488.2 Configuration utility to configure that capability
into the software.

EABO (6)
EABO indicates that an I/O operation has been canceled, usually due
to a timeout condition. Other causes are calling ibstop or receiving the
Device Clear message from the CIC while performing an I/O operation.
Frequently, the I/O is not progressing (the Listener is not continuing to
handshake or the Talker has stopped talking), or the byte count in the call
which timed out was more than the other device was expecting.

Solutions
Possible solutions for this error are as follows:

• Use the correct byte count in input functions or have the Talker use the
END message to signify the end of the transfer.

• Lengthen the timeout period for the I/O operation using ibtmo.

• Make sure that you have configured your device to send data before
you request data.

ENEB (7)
ENEB occurs when no GPIB interface exists at the I/O address specified in
the configuration program. This problem happens when the interface is not
physically plugged into the system, the I/O address specified during
configuration does not match the actual interface setting, or there is a
system conflict with the base I/O address.

Appendix C Error Codes and Solutions

NI-488.2 User Manual for Windows C-6 ni.com

Solutions
Make sure there is a GPIB interface in your computer that is properly
configured both in hardware and software using a valid base I/O address
by running the NI-488.2 Troubleshooting Wizard, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB.

2. Select Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

The Troubleshooting Wizard tests your GPIB interface and displays
the results.

EDMA (8)
EDMA occurs if a system DMA error is encountered when the NI-488.2
software attempts to transfer data over the GPIB using DMA.

Solutions
Possible solutions for this error are as follows:

• You can correct the EDMA problem in the hardware by using the
Device Manager in Windows Me/98/95 or the NI-488.2 Configuration
utility in Windows 2000/NT to reconfigure the hardware to not use a
DMA resource.

• You can correct the EDMA problem in the software by using ibdma to
disable DMA.

EOIP (10)
EOIP occurs when an asynchronous I/O operation has not finished before
some other call is made. During asynchronous I/O, you can only use
ibstop, ibnotify, ibwait, and ibonl or perform other non-GPIB
operations. If any other call is attempted, EOIP is returned.

Solutions
Resynchronize the driver and the application before making any further
NI-488.2 calls. Resynchronization is accomplished by using one of the
following functions:

ibnotify If the ibsta value passed to the ibnotify callback
contains CMPL, the driver and application are
resynchronized.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-7 NI-488.2 User Manual for Windows

ibwait If the returned ibsta contains CMPL, the driver and
application are resynchronized.

ibstop The I/O is canceled; the driver and application are
resynchronized.

ibonl The I/O is canceled and the interface is reset; the driver
and application are resynchronized.

ECAP (11)
ECAP results when your GPIB interface lacks the ability to carry out an
operation or when a particular capability has been disabled in the software
and a call is made that requires the capability.

Solutions
Check the validity of the call, or make sure your GPIB interface and the
driver both have the needed capability.

EFSO (12)
EFSO results when an ibrdf or ibwrtf call encounters a problem
performing a file operation. Specifically, this error indicates that the
function is unable to open, create, seek, write, or close the file being
accessed. The specific operating system error code for this condition
is contained in ibcntl.

Solutions
Possible solutions for this error are as follows:

• Make sure the filename, path, and drive that you specified are correct.

• Make sure that the access mode of the file is correct.

• Make sure there is enough room on the disk to hold the file.

Appendix C Error Codes and Solutions

NI-488.2 User Manual for Windows C-8 ni.com

EBUS (14)
EBUS results when certain GPIB bus errors occur during device functions.
All device functions send command bytes to perform addressing and other
bus management. Devices are expected to accept these command bytes
within the time limit specified by the default configuration or the ibtmo
function. EBUS results if a timeout occurred while sending these
command bytes.

Solutions
Possible solutions for this error are as follows:

• Verify that the instrument is operating correctly.

• Check for loose or faulty cabling or several powered-off instruments
on the GPIB.

• If the timeout period is too short for the driver to send command bytes,
increase the timeout period.

ESTB (15)
ESTB is reported only by the ibrsp function. ESTB indicates that one or
more serial poll status bytes received from automatic serial polls have been
discarded because of a lack of storage space. Several older status bytes are
available; however, the oldest is being returned by the ibrsp call.

Solutions
Possible solutions for this error are as follows:

• Call ibrsp more frequently to empty the queue.

• Disable autopolling with the ibconfig function (option
IbcAUTOPOLL) or the NI-488.2 Configuration utility, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»
Explore GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the +
next to the folder.

3. Right-click on your GPIB interface and select Properties from
the drop-down menu that appears.

Appendix C Error Codes and Solutions

© National Instruments Corporation C-9 NI-488.2 User Manual for Windows

ESRQ (16)
ESRQ can only be returned by a device-level ibwait call with RQS set in
the mask. ESRQ indicates that a wait for RQS is not possible because the
GPIB SRQ line is stuck on. This situation can be caused by the following
events:

• Usually, a device unknown to the software is asserting SRQ. Because
the software does not know of this device, it can never serial poll the
device and unassert SRQ.

• A GPIB bus tester or similar equipment might be forcing the SRQ line
to be asserted.

• A cable problem might exist involving the SRQ line.

Although the occurrence of ESRQ warns you of a definite GPIB problem,
it does not affect GPIB operations, except that you cannot depend on the
ibsta RQS bit while the condition lasts.

Solutions
Check to see if other devices not used by your application are asserting
SRQ. Disconnect them from the GPIB if necessary.

ETAB (20)
ETAB occurs only during the FindLstn and FindRQS functions. ETAB
indicates that there was some problem with a table used by these functions:

• In the case of FindLstn, ETAB means that the given table did not
have enough room to hold all the addresses of the Listeners found.

• In the case of FindRQS, ETAB means that none of the devices in the
given table were requesting service.

Solutions
In the case of FindLstn, increase the size of result arrays. In the case of
FindRQS, check to see if other devices not used by your application are
asserting SRQ. Disconnect them from the GPIB if necessary.

© National Instruments Corporation D-1 NI-488.2 User Manual for Windows

D
Windows Me/98/95:
Troubleshooting and
Common Questions

This appendix describes how to troubleshoot problems and answers some
common questions about the NI-488.2 software for Windows Me/98/95.

Troubleshooting EDVR Error Conditions
In some cases, NI-488.2 calls may return with the ERR bit set in ibsta
and the value EDVR in iberr. The value stored in ibcntl is useful in
troubleshooting the error condition.

EDVR Error Condition with ibcntl Set to 0xE028002C (–534249428)
If a call is made with an interface number that is within the range of allowed
interface numbers (typically 0 to 3), but which has not been assigned to a
GPIB interface, an EDVR error condition occurs with ibcntl set to
0xE028002C. You can assign an interface number to a GPIB interface by
configuring the NI-488.2 software and selecting an interface name. For
information about how to configure the NI-488.2 software, refer to the
online help in the NI-488.2 Configuration utility, as follows:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Devices and Interfaces directory by clicking on the + next
to the folder.

3. Right-click on your GPIB interface and select Properties from the
drop-down menu that appears.

EDVR Error Condition with ibcntl Set to 0xE0140025 (–535560155)
If a call is made with an interface number that is not within the range of
allowed interface numbers (typically 0 to 3), an EDVR error condition
occurs with ibcntl set to 0xE0140025.

Appendix D Windows Me/98/95: Troubleshooting and Common Questions

NI-488.2 User Manual for Windows D-2 ni.com

EDVR Error Condition with ibcntl Set to 0xE0140035 (–535560139)
If a call is made with a device name that is not listed in the logical device
templates that are part of the NI-488.2 Configuration utility, an EDVR error
condition occurs with ibcntl set to 0xE0140035.

EDVR Error Condition with ibcntl Set to 0xE0320029 (–533594071) or
0xE1050029 (–519765975)

If a call is made with an interface number that is assigned to a GPIB
interface that is unusable because of a resource conflict, an EDVR error
condition occurs with ibcntl set to 0xE0320029 or 0xE1050029.

This error is also returned if you remove a PCMCIA-GPIB or
PCMCIA-GPIB+ while the driver is accessing it or if you try to
access a PCMCIA-GPIB when 32-bit PCMCIA drivers are not enabled.
To enable the 32-bit PCMCIA drivers, complete the following steps:

1. Select Start»Settings»Control Panel.

2. Double-click on the System icon.

3. Select the Performance tab.

4. If the PC Cards (PCMCIA) line does not read 32-bit, select
Start»Settings»Control Panel and double-click on the PC Card
(PCMCIA) icon.

The PC Card (PCMCIA) Wizard enables the 32-bit PCMCIA drivers.

5. Shut down your system and restart it.

Your system should detect your PCMCIA-GPIB or PCMCIA-GPIB+
interface.

EDVR Error Condition with ibcntl Set to 0xE0140004 (–535560188)
This error might occur if the GPIB interface has not been correctly installed
and detected by Windows. For instructions on how to install the GPIB
hardware, refer to the GPIB Hardware Guide on the NI-488.2 for
Windows CD. For instructions on accessing this manual, refer to the
Using the NI-488.2 Documentation section in About This Manual.

EDVR Error Condition with ibcntl set to 0xE1030043 (–519897021)
This error occurs if you have enabled DOS NI-488.2 support and attempted
to run an existing NI-488.2 DOS application that was compiled with an
older, unsupported DOS language interface.

Appendix D Windows Me/98/95: Troubleshooting and Common Questions

© National Instruments Corporation D-3 NI-488.2 User Manual for Windows

Troubleshooting Device Manager Problems
If you are having trouble with your GPIB interface, use the Windows
Device Manager to troubleshoot your problems. To do so, complete the
following steps:

1. Select Start»Settings»Control Panel.

2. Double-click on the System icon.

3. Select the Device Manager tab and click on the View devices by type
button.

4. Check to see if the interface listing in the Device Manager appears with
an exclamation point or X by it. If it does, click on the interface listing
and then click on the Properties button to display the General
property tab for the interface.

5. In the Device Status section, look for the status description and status
code number. Use the status code descriptions and numbers in
Table D-1 to troubleshoot your problem.

Table D-1. Device Manager Status Codes

Code Problem Solution

9 Windows had a problem reading
information from the GPIB interface.
This problem can occur if you are using
an older revision of the AT-GPIB/TNT+
or AT-GPIB/TNT (PnP) interface.

Contact National Instruments to upgrade
your GPIB interface.

22 The GPIB interface is disabled. To enable the GPIB interface, check the
appropriate configuration checkbox in the
Device Usage section of the General tab.

24 The GPIB interface is not present, or the
Device Manager is unaware that the
GPIB interface is present.

Select the interface in the Device Manager,
and click on the Remove button. Next, click
on the Refresh button. At this point, the
system rescans the installed hardware, and
the GPIB interface should show up without
any problems. If the problem persists, contact
National Instruments.

27 Windows was unable to assign the GPIB
interface any resources.

Free up system resources by disabling other
unnecessary hardware so that enough
resources are available for the GPIB
interface.

Appendix D Windows Me/98/95: Troubleshooting and Common Questions

NI-488.2 User Manual for Windows D-4 ni.com

Enabling Interrupts
In Windows Me/98/95, you can use your GPIB interface without interrupts,
but the NI-488.2 software performance is significantly slower without
interrupts. For example, transfer sizes between 1 and 10 bytes transfer at a
rate of only 2% of the transfer rate with enabled interrupts. As the transfer
size increases, the performance degradation decreases slightly, but it
remains a significant problem for all transfers under 1 Mbyte.

If you find the diminished performance unacceptable, complete the
following steps to free up an interrupt resource and configure your GPIB
interface to use the available interrupt resource.

Step 1. Free up an Interrupt Resource
To free up an interrupt resource, you must remove or disable one of the
other devices in your system. If possible, remove a device in your system.
However, your system typically does not have any devices that can be
removed. In this case, you should disable a device that you do not use, such
as LPT1 or COM1. To do so, complete the following steps:

1. Select Start»Settings»Control Panel.

2. Double-click on the System icon.

3. Select the Device Manager tab and click on the View devices by type
button.

If you do not use your LPT port, you can disable the LPT1 device and
if you do not use your COM port, you can disable the COM1 device.
However, do not disable a device that your system is using. You only
need to disable one device—either LPT1 or COM1.

4. Double-click on the Ports (COM & LPT) item.

If the device you want to disable has a yellow exclamation mark (!)
overlaid on it, the device is not working properly and does not have
assigned resources. Disabling a device that is not working properly
does not free up an interrupt resource.

5. Double-click on the device that you want to
disable—Communications Port (COM1) or Printer Port (LPT1).

6. In the Properties dialog box, check the Disable in this hardware
profile checkbox. If you are using Windows 95 version A, uncheck the
Original Configuration (Current) checkbox.

Appendix D Windows Me/98/95: Troubleshooting and Common Questions

© National Instruments Corporation D-5 NI-488.2 User Manual for Windows

7. Click on the OK button to save your changes.

On the Device Manager tab, the disabled device has a red X overlaid
on it. The red X indicates that the device is disabled.

Step 2. Remove Your GPIB Interface from the Device Manager
To remove your GPIB interface from the Device Manager, complete the
following steps:

1. On the Device Manager tab, double-click on the National
Instruments GPIB Interfaces item. If you are removing a
PCMCIA-GPIB+ interface, double-click on the Multifunction
Adapters item.

2. Click on the GPIB interface that does not have an interrupt resource
and click on the Remove button. If you are removing a
PCMCIA-GPIB+ interface, click on the NI PCMCIA-GPIB+
Multifunction Parent item and click on the Remove button.

Step 3. Refresh the Device Manager or Reinstall Your GPIB interface
On the Device Manager tab, click on the Refresh button.

If your GPIB interface does not appear under National Instruments GPIB
Interfaces, your GPIB interface is not Plug and Play. In this case, you must
use the Add GPIB Hardware Wizard to reinstall your interface. To start the
wizard, select Start»Programs»National Instruments»NI-488.2»Add
GPIB Hardware and follow the instructions on the screen.

Common Questions
How do I get started?

To get started with your GPIB hardware and the NI-488.2 software, use the
NI-488.2 Getting Started Wizard. To do so, select Start»Programs»
National Instruments»NI-488.2»Getting Started Wizard.

How do I troubleshoot problems?

Run the NI-488.2 Troubleshooting Wizard. To do so, select
Start»Programs»National Instruments»NI-488.2»Explore GPIB.
Then, select Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

Appendix D Windows Me/98/95: Troubleshooting and Common Questions

NI-488.2 User Manual for Windows D-6 ni.com

How can I determine which version of the NI-488.2 software I have
installed?

To view the NI-488.2 software version, complete the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Software directory by clicking on the + next to the folder.

3. Click on NI-488.2 Software.

Measurement & Automation Explorer displays the version number of
the NI-488.2 software in the right window pane.

What do I do if my GPIB hardware is listed in the Windows Device
Manager with a circled X or an exclamation point (!) overlaid on it?

Refer to the Troubleshooting Device Manager Problems section of this
appendix for information about what might cause this problem. If you
already completed the troubleshooting steps, contact National Instruments.

How can I determine which type of GPIB hardware I have installed?

Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB and expand the Devices and Interfaces directory by clicking on
the + next to the folder.

Measurement & Automation Explorer lists your installed GPIB hardware
under Devices and Interfaces.

How many GPIB interfaces can I configure for use with the NI-488.2
software?

You can configure the NI-488.2 software to communicate with up to
100 GPIB interfaces.

How many devices can I configure for use with the NI-488.2 software?

You can configure the NI-488.2 software to use up to 1,024 logical devices.
The default number of devices is 32. The maximum number of physical
devices you should connect to a single GPIB interface is 14, or fewer,
depending on your system configuration.

Appendix D Windows Me/98/95: Troubleshooting and Common Questions

© National Instruments Corporation D-7 NI-488.2 User Manual for Windows

Are interrupts and DMA required for the NI-488.2 software?

Neither interrupts nor DMA are required. However, if you are using a GPIB
interface with Analyzer capability (PCMCIA-GPIB+ or AT-GPIB/TNT+),
at least one interrupt level is required for the GPIB Analyzer driver.

In Windows Me/98/95, you can use your GPIB interface without interrupts,
but the NI-488.2 software performance is significantly slower without
interrupts. For example, transfer sizes between 1 and 10 bytes transfer at a
rate of only 2% of the transfer rate with enabled interrupts. As the transfer
size increases, the performance degradation decreases slightly, but it
remains a significant problem for all transfers under 1 Mbyte. For
instructions on how to assign an interrupt to your GPIB interface if one
was not assigned, refer to the Enabling Interrupts section earlier in this
appendix.

How can I determine if my GPIB hardware and the NI-488.2 software
are installed properly?

Run the NI-488.2 Troubleshooting Wizard. To do so, select
Start»Programs»National Instruments»NI-488.2»Explore GPIB. Then
select Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

When should I use the Interactive Control utility?

You can use the Interactive Control utility to test and verify instrument
communication, troubleshoot problems, and develop your application.
For more information, refer to Chapter 6, Interactive Control Utility.

How do I use an NI-488.2 language interface?

For information about using NI-488.2 language interfaces, refer to
Chapter 3, Developing Your NI-488.2 Application.

What do I need to know to communicate properly with my GPIB
instrument?

Refer to the documentation that came with your instrument. The command
sequences that you use depend on the specific instrument. The
documentation for each instrument should include the GPIB commands
that you need to communicate with your instrument. In most cases,
device-level traditional NI-488.2 calls are sufficient for communicating
with instruments. For more information, refer to Chapter 3, Developing
Your NI-488.2 Application.

Appendix D Windows Me/98/95: Troubleshooting and Common Questions

NI-488.2 User Manual for Windows D-8 ni.com

How can I start communicating with my GPIB instrument?

For simple instrument communication, use the NI-488.2 Communicator.
For instructions on how to use the NI-488.2 Communicator, refer to the
Basic Communication (Query/Write/Read) section in Chapter 2,
Measurement & Automation Explorer.

How do I check for errors in my NI-488.2 application?

Examine the value of ibsta after each NI-488.2 call. If a call fails, the
ERR bit of ibsta is set and an error code is stored in iberr. For more
information about global status variables, refer to Chapter 4, Debugging
Your Application.

What information should I have before I call National Instruments?

Before you call National Instruments, record the results of the NI-488.2
Troubleshooting Wizard. To start the NI-488.2 Troubleshooting Wizard,
select Start»Programs»National Instruments»NI-488.2»Explore
GPIB. Then select Help»Troubleshooting»NI-488.2 Troubleshooting
Wizard.

© National Instruments Corporation E-1 NI-488.2 User Manual for Windows

E
Windows 2000/NT:
Common Questions

This appendix answers some common questions about the NI-488.2
software for Windows 2000/NT.

Common Questions
How do I get started?

To get started with your GPIB hardware and the NI-488.2 software, use
the NI-488.2 Getting Started Wizard. To do so, select Start»Programs»
National Instruments»NI-488.2»Getting Started Wizard.

How do I troubleshoot problems?

Run the NI-488.2 Troubleshooting Wizard. To do so, select
Start»Programs»National Instruments»NI-488.2»Explore GPIB. Then
select Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

How can I determine which version of the NI-488.2 software I have
installed?

To view the NI-488.2 software version, complete the following steps:

1. Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB to start Measurement & Automation Explorer.

2. Expand the Software directory by clicking on the + next to the folder.

3. Click on NI-488.2 Software.

Measurement & Automation Explorer displays the version number of
the NI-488.2 software in the right window pane.

Appendix E Windows 2000/NT: Common Questions

NI-488.2 User Manual for Windows E-2 ni.com

How can I determine which type of GPIB hardware I have installed?

Select Start»Programs»National Instruments»NI-488.2»Explore
GPIB and expand the Devices and Interfaces directory by clicking on
the + next to the folder.

Measurement & Automation Explorer lists your installed GPIB hardware
under Devices and Interfaces.

How many GPIB interfaces can I configure for use with the NI-488.2
software?

You can configure the NI-488.2 software to communicate with up to four
GPIB interfaces.

How many devices can I configure for use with the NI-488.2 software?

You can configure the NI-488.2 software to use up to 100 logical devices.
The default number of devices is 32.

Are interrupts and DMA required with the NI-488.2 software?

Interrupts are required, but DMA is not.

How can I determine if my GPIB hardware and the NI-488.2 software
are installed properly?

Run the NI-488.2 Troubleshooting Wizard. To do so, select
Start»Programs»National Instruments»NI-488.2»Explore GPIB. Then
select Help»Troubleshooting»NI-488.2 Troubleshooting Wizard.

How can I start communicating with my GPIB instrument?

For simple instrument communication, use the NI-488.2 Communicator.
For instructions on how to use the NI-488.2 Communicator, refer to the
Basic Communication (Query/Write/Read) section in Chapter 2,
Measurement & Automation Explorer.

When should I use the Interactive Control utility?

You can use the Interactive Control utility to test and verify instrument
communication, troubleshoot problems, and develop your application.
For more information, refer to Chapter 6, Interactive Control Utility.

Appendix E Windows 2000/NT: Common Questions

© National Instruments Corporation E-3 NI-488.2 User Manual for Windows

How do I use an NI-488.2 language interface?

For information about using NI-488.2 language interfaces, refer to
Chapter 3, Developing Your NI-488.2 Application.

What do I need to know to communicate properly with my GPIB
instrument?

Refer to the documentation that came with your instrument. The command
sequences that you use depend on the specific instrument. The
documentation for each instrument should include the GPIB commands
that you need to communicate with your instrument. In most cases,
device-level traditional NI-488.2 calls are sufficient for communicating
with instruments. For more information, refer to Chapter 3, Developing
Your NI-488.2 Application.

How do I check for errors in my NI-488.2 application?

Examine the value of ibsta after each NI-488.2 call. If a call fails, the
ERR bit of ibsta is set and an error code is stored in iberr. For more
information about global status variables, refer to Chapter 4, Debugging
Your Application.

What information should I have before I call National Instruments?

Before you call National Instruments, record the results of the NI-488.2
Troubleshooting Wizard. To start the NI-488.2 Troubleshooting Wizard,
select Start»Programs»National Instruments»NI-488.2»Explore
GPIB. Then select Help»Troubleshooting»NI-488.2 Troubleshooting
Wizard.

© National Instruments Corporation F-1 NI-488.2 User Manual for Windows

F
Technical Support Resources

Web Support
National Instruments Web support is your first stop for help in solving
installation, configuration, and application problems and questions. Online
problem-solving and diagnostic resources include frequently asked
questions, knowledge bases, product-specific troubleshooting wizards,
manuals, drivers, software updates, and more. Web support is available
through the Technical Support section of ni.com.

NI Developer Zone
The NI Developer Zone at ni.com/zone is the essential resource for
building measurement and automation systems. At the NI Developer Zone,
you can easily access the latest example programs, system configurators,
tutorials, technical news, as well as a community of developers ready to
share their own techniques.

Customer Education
National Instruments provides a number of alternatives to satisfy your
training needs, from self-paced tutorials, videos, and interactive CDs to
instructor-led hands-on courses at locations around the world. Visit the
Customer Education section of ni.com for online course schedules,
syllabi, training centers, and class registration.

System Integration
If you have time constraints, limited in-house technical resources, or other
dilemmas, you may prefer to employ consulting or system integration
services. You can rely on the expertise available through our worldwide
network of Alliance Program members. To find out more about our
Alliance system integration solutions, visit the System Integration section
of ni.com.

Appendix F Technical Support Resources

NI-488.2 User Manual for Windows F-2 ni.com

Worldwide Support
National Instruments has offices located around the world to help address
your support needs. You can access our branch office Web sites from the
Worldwide Offices section of ni.com. Branch office Web sites provide
up-to-date contact information, support phone numbers, e-mail addresses,
and current events.

If you have searched the technical support resources on our Web site and
still cannot find the answers you need, contact your local office or National
Instruments corporate. Phone numbers for our worldwide offices are listed
at the front of this manual.

© National Instruments Corporation G-1 NI-488.2 User Manual for Windows

Glossary

Prefix Meaning Value

n- nano- 10–9

m- milli- 10–3

M- mega- 106

A

acceptor handshake Listeners use this GPIB interface function to receive data, and all devices
use it to receive commands. See source handshake and handshake.

access board The GPIB board that controls and communicates with the devices on the
bus that are attached to it.

ANSI American National Standards Institute.

API Application Programming Interface

ASCII American Standard Code for Information Interchange.

asynchronous An action or event that occurs at an unpredictable time with respect to the
execution of a program.

automatic serial
polling

A feature of the GPIB software in which serial polls are executed
automatically by the driver whenever a device asserts the GPIB SRQ line.
Also called autopolling.

B

base I/O address See I/O address.

BIOS Basic Input/Output System.

board-level function A rudimentary function that performs a single operation.

Glossary

NI-488.2 User Manual for Windows G-2 ni.com

C

CFE Configuration Enable. The GPIB command which precedes CFGn and is
used to place devices into their configuration mode.

CFGn These GPIB commands (CFG1 through CFG15) follow CFE and are used
to configure all devices for the number of meters of cable in the system so
HS488 transfers occur without errors.

CIC Controller-In-Charge. The device that manages the GPIB by sending
interface messages to other devices.

CPU Central processing unit.

D

DAV Data Valid. One of the three GPIB handshake lines. See handshake.

DCL Device Clear. The GPIB command used to reset the device or internal
functions of all devices. See SDC.

device-level function A function that combines several rudimentary board operations into one
function so that the user does not have to be concerned with bus
management or other GPIB protocol matters.

DIO1 through DIO8 The GPIB lines that are used to transmit command or data bytes from one
device to another.

DLL Dynamic link library.

DMA Direct memory access. High-speed data transfer between the GPIB board
and memory that is not handled directly by the CPU. Not available on some
systems. See programmed I/O.

driver Device driver software installed within the operating system.

E

END or END Message A message that signals the end of a data string. END is sent by asserting
the GPIB End or Identify (EOI) line with the last data byte.

EOI A GPIB line that signals either the last byte of a data message (END) or
the parallel poll Identify (IDY) message.

Glossary

© National Instruments Corporation G-3 NI-488.2 User Manual for Windows

EOS or EOS Byte A 7- or 8-bit end-of-string character that is sent as the last byte of a data
message.

EOT End of transmission.

ESB The Event Status bit. Part of the IEEE 488.2-defined status byte which is
received from a device responding to a serial poll.

F

FIFO First-in-first-out.

G

GET Group Execute Trigger. The GPIB command used to trigger a device or
internal function of an addressed Listener.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1992.

GPIB address The address of a device on the GPIB, composed of a primary address
(MLA and MTA) and perhaps a secondary address (MSA). The GPIB
board has both a GPIB address and an I/O address.

GPIB board Refers to the National Instruments family of GPIB interfaces.

GTL Go To Local. The GPIB command used to place an addressed Listener in
local (front panel) control mode.

H

handshake The mechanism used to transfer bytes from the source handshake function
of one device to the acceptor handshake function of another device. DAV,
NRFD, and NDAC, three GPIB lines, are used in an interlocked fashion to
signal the phases of the transfer, so that bytes can be sent asynchronously
(for example, without a clock) at the speed of the slowest device.

For more information about handshaking, refer to the ANSI/IEEE Standard
488.1-1987.

Glossary

NI-488.2 User Manual for Windows G-4 ni.com

hex Hexadecimal; a number represented in base 16. For example, decimal 16 is
hex 10.

high-level function See device-level function.

HS488 A high-speed data transfer protocol for IEEE 488. This protocol increases
performance for GPIB reads and writes up to 8 Mbytes/s, depending on
your system.

Hz Hertz.

I

ibcnt After each NI-488.2 I/O call, this global variable contains the actual
number of bytes transmitted. On systems with a 16-bit integer, such as
MS-DOS, ibcnt is a 16-bit integer, and ibcntl is a 32-bit integer. For
cross-platform compatibility, use ibcntl.

ibcntl After each NI-488.2 I/O call, this global variable contains the actual
number of bytes transmitted. On systems with a 16-bit integer, such as
MS-DOS, ibcnt is a 16-bit integer, and ibcntl is a 32-bit integer. For
cross-platform compatibility, use ibcntl.

iberr A global variable that contains the specific error code associated with a
function call that failed.

ibsta At the end of each function call, this global variable (status word) contains
status information.

IEEE Institute of Electrical and Electronic Engineers.

interface message A broadcast message sent from the Controller to all devices and used to
manage the GPIB.

I/O Input/output. In this manual, it is the transmission of commands or
messages between the system via the GPIB board and other devices on the
GPIB.

I/O address The address of the GPIB board from the point of view of the CPU, as
opposed to the GPIB address of the GPIB board. Also called port address
or board address.

Glossary

© National Instruments Corporation G-5 NI-488.2 User Manual for Windows

ISA Industry Standard Architecture.

ist An Individual Status bit of the status byte used in the Parallel Poll
Configure function.

L

LAD Listen Address. See MLA.

language interface Code that enables an application program that uses NI-488.2 calls to access
the driver.

Listener A GPIB device that receives data messages from a Talker.

LLO Local Lockout. The GPIB command used to tell all devices that they may
or should ignore remote (GPIB) data messages or local (front panel)
controls, depending on whether the device is in local or remote program
mode.

low-level function A rudimentary board or device function that performs a single operation.

M

m Meters.

MAV The Message Available bit is part of the IEEE 488.2-defined status byte
which is received from a device responding to a serial poll.

MLA My Listen Address. A GPIB command used to address a device to be a
Listener. It can be any one of the 31 primary addresses.

MSA My Secondary Address. The GPIB command used to address a device to be
a Listener or a Talker when extended (two-byte) addressing is used. The
complete address is a MLA or MTA address followed by an MSA address.
There are 31 secondary addresses for a total of 961 distinct listen or talk
addresses for devices.

MTA My Talk Address. A GPIB command used to address a device to be a
Talker. It can be any one of the 31 primary addresses.

multitasking The concurrent processing of more than one program or task.

Glossary

NI-488.2 User Manual for Windows G-6 ni.com

N

NDAC Not Data Accepted. One of the three GPIB handshake lines. See handshake.

NRFD Not Ready For Data. One of the three GPIB handshake lines.
See handshake.

P

parallel poll The process of polling all configured devices at once and reading a
composite poll response. See serial poll.

PC Personal computer.

PCI Peripheral Component Interconnect.

PIO See programmed I/O.

PPC Parallel Poll Configure. The GPIB command used to configure an
addressed Listener to participate in polls.

PPD Parallel Poll Disable. The GPIB command used to disable a configured
device from participating in polls. There are 16 PPD commands.

PPE Parallel Poll Enable. The GPIB command used to enable a configured
device to participate in polls and to assign a DIO response line. There
are 16 PPE commands.

PPU Parallel Poll Unconfigure. The GPIB command used to disable used to
disable any device from participating in polls.

programmed I/O Low-speed data transfer between the GPIB interface and memory in
which the CPU moves each data byte according to program instructions.
See DMA.

R

resynchronize The GPIB software and the user application must resynchronize after
asynchronous I/O operations have completed.

RQS Request Service.

Glossary

© National Instruments Corporation G-7 NI-488.2 User Manual for Windows

S

s Seconds.

SDC Selected Device Clear. The GPIB command used to reset internal or device
functions of an addressed Listener. See DCL.

semaphore An object that maintains a count between zero and some maximum value,
limiting the number of threads that are simultaneously accessing a shared
resource.

serial poll The process of polling and reading the status byte of one device at a time.
See parallel poll.

service request See SRQ.

source handshake The GPIB interface function that transmits data and commands. Talkers use
this function to send data, and the Controller uses it to send commands.
See acceptor handshake and handshake.

SPD Serial Poll Disable. The GPIB command used to cancel an SPE command.

SPE Serial Poll Enable. The GPIB command used to enable a specific device to
be polled. That device must also be addressed to talk. See SPD.

SRQ Service Request. The GPIB line that a device asserts to notify the CIC that
the device needs servicing.

status byte The IEEE 488.2-defined data byte sent by a device when it is serially
polled.

status word See ibsta.

synchronous Refers to the relationship between the GPIB driver functions and a process
when executing driver functions is predictable; the process is blocked until
the driver completes the function.

System Controller The single designated Controller that can assert control (become CIC of the
GPIB) by sending the Interface Clear (IFC) message. Other devices can
become CIC only by having control passed to them.

Glossary

NI-488.2 User Manual for Windows G-8 ni.com

T

TAD Talk Address. See MTA.

Talker A GPIB device that sends data messages to Listeners.

TCT Take Control. The GPIB command used to pass control of the bus from the
current Controller to an addressed Talker.

timeout A feature of the GPIB driver that prevents I/O functions from hanging
indefinitely when there is a problem on the GPIB.

TLC An integrated circuit that implements most of the GPIB Talker, Listener,
and Controller functions in hardware.

U

ud Unit descriptor. A variable name and first argument of each function call
that contains the unit descriptor of the GPIB interface or other GPIB device
that is the object of the function.

UNL Unlisten. The GPIB command used to unaddress any active Listeners.

UNT Untalk. The GPIB command used to unaddress an active Talker.

© National Instruments Corporation I-1 NI-488.2 User Manual for Windows

Index

Numbers/Symbols
! (repeat previous function) function, Interactive

Control utility, 6-9
$ filename (execute indirect file) function,

Interactive Control utility, 6-10
+ (turn ON display) function, Interactive Control

utility, 6-10
- (turn OFF display) function, Interactive

Control utility, 6-9

A
active Controller, A-1
addresses. See GPIB addresses.
AllSpoll routine, 7-15, 7-16
application development. See also debugging;

NI-488.2 programming techniques.
accessing NI-488.2 driver, 3-3
checking status with global

variables, 3-5 to 3-7
count variables (ibcnt and ibcntl), 3-7
error variable (iberr), 3-7
status word (ibsta), 3-5 to 3-7

choosing programming methodology
accessing NI-488.2 driver, 3-3
communicating with single GPIB

device, 3-4 to 3-5
direct entry access, 3-3
multiple interfaces and/or multiple

devices, 3-5
NI-488.2 language interfaces, 3-3
selecting NI-488.2 API subset,

3-4 to 3-5
communicating with instruments

multiple interfaces or multiple
devices, 3-5

single GPIB device, 3-4 to 3-5

using Interactive Control utility, 3-7
using NI-488.2 Communicator,

3-1 to 3-2
interactive instrument control, 3-2 to 3-3
language-specific instructions, 3-12 to 3-16

Borland C/C++, 3-12
direct entry with C, 3-13 to 3-16

directly accessing gpib-32.dll
exports, 3-14 to 3-16

gpib-32.dll exports, 3-13 to 3-14
Microsoft Visual Basic, 3-13
Microsoft Visual C/C++, 3-12

programming models
multiple interfaces or multiple GPIB

devices, 3-10 to 3-12
single GPIB device, 3-8 to 3-9

simple instrument control, 3-1 to 3-2
application programming models

multiple interfaces or multiple GPIB
devices, 3-10 to 3-12

becoming Controller-In-Charge, 3-10
communicating with devices,

3-11 to 3-12
determining GPIB address of

device, 3-11
general steps and examples,

3-10 to 3-12
initialization, 3-10
initializing devices, 3-11
items to include, 3-10
placing device offline, 3-12

single GPIB device, 3-8 to 3-9
clearing device, 3-9
communicating with device, 3-9
general steps and examples, 3-8 to 3-9
initialization, 3-8 to 3-9
items to include, 3-8

Index

NI-488.2 User Manual for Windows I-2 ni.com

placing device offline before
exiting, 3-9

applications, existing. See existing
applications, running.

asynchronous event notification in Win32
applications, 7-4 to 7-9

calling ibnotify function, 7-4 to 7-5
ibnotify programming example,

7-5 to 7-9
ATN (attention) line (table), A-3
ATN status word condition

bit position, hex value, and type
(table), 3-6

description, B-4
automatic serial polling. See serial polling.
auxiliary functions, Interactive Control

utility, 6-9 to 6-10

B
board calls. See NI-488.2 calls.
Borland C/C++ programming

instructions, 3-12
buffer option function, Interactive Control

utility, 6-10
bus management and device-level calls, 7-11

C
C language

Borland C/C++ programming
instructions, 3-12

direct entry for application development,
3-13 to 3-16

directly accessing gpib-32.dll
exports, 3-15 to 3-16

gpib-32.dll exports, 3-13 to 3-14
Microsoft Visual C/C++ programming

instructions, 3-12
cable length for high-speed data transfers,

7-2 to 7-3

CIC. See Controller-in-Charge (CIC).
CIC Protocol, 7-11
CIC status word condition

bit position, hex value, and type
(table), 3-6

description, B-4
CMPL status word condition

bit position, hex value, and type
(table), 3-6

description, B-3
common questions. See troubleshooting and

common questions.
communicating with instruments

multiple interfaces or multiple
devices, 3-5

simple instrument control, 3-1 to 3-2
single GPIB device, 3-4 to 3-5
using Interactive Control utility, 3-7
using Measurement & Automation

Explorer, 2-6 to 2-8
advanced communication, 2-7 to 2-8
basic communication, 2-6 to 2-7

using NI-488.2 Communicator, 3-1 to 3-2
communication errors, 4-5

repeat addressing, 4-5
termination method, 4-5

configuration, 1-1 to 1-3. See also Interactive
Control utility.

controlling more than one interface, 1-2
linear and star system configuration

(figure), 1-1
requirements, 1-2 to 1-3
system configuration effects on

HS488, 7-3
configuration errors, 4-3
Configure (CFGn) message, 7-3
Configure Enable (CFE) message, 7-3
Controller-in-Charge (CIC)

active or inactive, A-1
making GPIB board CIC, 3-10, 7-11
System Controller as CIC, A-1

Index

© National Instruments Corporation I-3 NI-488.2 User Manual for Windows

Controllers
definition, A-1
monitoring by Talker/Listener

applications, 7-11 to 7-12
System Controller, A-1

count information, in Interactive Control
utility, 6-11

count variables (ibcnt and ibcntl), 3-7
customer education, F-1

D
data lines, A-2
data transfers

high-speed (HS488), 7-2 to 7-3
enabling, 7-2 to 7-3
system configuration effects, 7-3

terminating, 7-1 to 7-2
DAV (data valid) line (table), A-3
DCAS status word condition

bit position, hex value, and type
(table), 3-6

description, B-5
Talker/Listener applications, 7-12

debugging. See also NI Spy utility;
troubleshooting and common questions.

communication errors, 4-5
repeat addressing, 4-5
termination method, 4-5

configuration errors, 4-2
global status variables, 4-2
GPIB error codes (table), C-1
other errors, 4-5
timing errors, 4-4

DevClearList function, D-11
device calls. See NI-488.2 calls.
device-level calls and bus management, 7-11
Device Manager device status codes,

troubleshooting, D-3
direct access to NI-488.2 dynamic link

library, 3-3

documentation
accessing NI-488.2 Online Help, xi
conventions used in manual, xii
related documentation, xiii
using NI-488.2 documentation, xi

DOS NI-488.2 applications
enabling/disabling support

Windows Me/98/95, 2-13 to 2-14
Windows 2000/NT, 2-14

running
under Windows Me/98/95, 3-17
under Windows 2000/NT, 3-18

DTAS status word condition
bit position, hex value, and type

(table), 3-6
description, B-5
Talker/Listener applications, 7-12

dynamic link library, GPIB. See
NI-488.2 DLL.

E
EABO error code, C-5
EADR error code, C-4
EARG error code, C-4
EBUS error code, C-8
ECAP error code, C-7
ECIC error code, C-2 to C-3
EDMA error code, C-6
EDVR error code

description, C-2
troubleshooting, D-1 to D-2

EFSO error code, C-7
end-of-string character. See EOS.
END status word condition

bit position, hex value, and type
(table), 3-6

description, B-2
ENEB error code, C-5 to C-6
ENOL error code, C-3

Index

NI-488.2 User Manual for Windows I-4 ni.com

EOI (end or identify) line
purpose (table), A-3
termination of data transfers, 7-1

EOIP error code, C-6 to C-7
EOS

configuring EOS mode, 7-1 to 7-2
EOS comparison method, 7-1
EOS read method, 7-2
EOS write method, 7-1

ERR status word condition
bit position, hex value, and type

(table), 3-6
description, B-2

error codes and solutions
EABO, C-5
EADR, C-4
EARG, C-4
EBUS, C-8
ECAP, C-7
ECIC, C-2 to C-3
EDMA, C-6
EDVR, C-2, D-1 to D-2
EFSO, C-7
ENEB, C-5 to C-6
ENOL, C-3
EOIP, C-6 to C-7
ESAC, C-5
ESRQ, C-8 to C-9
ESTB, C-8
ETAB, C-9
GPIB error codes (table), C-1

error conditions
communication errors, 4-5

repeat addressing, 4-5
termination method, 4-5

configuration errors, 4-3
Interactive Control utility error

information, 6-10 to 6-11
timing errors, 4-4

error variable (iberr), 3-7
ESAC error code, C-5

ESRQ error code, C-8 to C-9
ESTB error code, C-8
ETAB error code, C-9
event notification. See asynchronous event

notification in Win32 applications.
Event Status bit (ESB), 7-12 to 7-13
execute function n times (n *) function,

Interactive Control utility, 6-10
execute indirect file ($) function, Interactive

Control utility, 6-10
execute previous function n times (n * !)

function, Interactive Control utility, 6-10
existing applications, running

DOS NI-488.2 applications
Windows Me/98/95, 3-17
Windows 2000/NT, 3-18

Win32 and Win16 NI-488.2
applications, 3-17

F
FindLstn function, 3-11
FindRQS function, 7-15, 7-16

G
General Purpose Interface Bus. See GPIB.
global variables, 3-5 to 3-7

count variables (ibcnt and ibcntl), 3-7
debugging applications, 4-2
error variable (iberr), 3-7
status word (ibsta), 3-5 to 3-7
writing multithread Win32 GPIB

applications, 7-9 to 7-10
GPIB

configuration, 1-1 to 1-3. See also
Interactive Control utility.

controlling more than one board, 1-2
linear and star system configuration

(figure), 1-1
requirements, 1-2 to 1-3

Index

© National Instruments Corporation I-5 NI-488.2 User Manual for Windows

definition, A-1
overview, A-1
sending messages across, A-2 to A-3

data lines, A-2
handshake lines, A-3
interface management lines, A-3

Talkers, Listeners, and Controllers, A-1
gpib-32.dll exports

accessing directly, 3-14 to 3-16
direct entry with C, 3-13 to 3-14

GPIB addresses
address bit configuration (figure), A-2
primary and secondary, A-2
repeat addressing, 4-5
syntax in Interactive Control utility, 6-5

GPIB device templates, changing
Windows Me/98/95, 2-12
Windows 2000/NT, 2-12

GPIB-ENET network settings, viewing or
changing, 2-15 to 2-16

assigning IP address, 2-15
configuring advanced IP settings, 2-15
updating GPIB-ENET firmware, 2-16

GPIB-ENET/100 network settings, viewing or
changing, 2-16 to 2-17

configuring network parameters, 2-16
updating GPIB-ENET/100

firmware, 2-17
GPIB instruments. See also communicating

with instruments.
Instruments Enumeration Failed

message, 2-6
Instruments not Found message, 2-6
scanning for, 2-5 to 2-6
viewing information about, 2-11 to 2-12

GPIB interface
adding new, 2-4 to 2-5
deleting, 2-5
viewing or changing settings, 2-9 to 2-11

Windows Me/98/95, 2-9 to 2-10
Windows 2000/NT, 2-10 to 2-11

H
handshake lines, A-3
help. See online help.
Help (display Interactive Control utility online

help) function (table), 6-9
Help option function, Interactive Control

utility, 6-9
high-speed data transfers (HS488), 7-2 to 7-3

cable length, 7-2, 7-3
enabling HS488, 7-2 to 7-3
system configuration effects, 7-3

HS488. See high-speed data transfers
(HS488).

HSS488 configuration message, 7-3

I
ibask function, 7-3
ibclr function

clearing devices, 3-9
using in Interactive Control utility

(example), 6-3
ibcnt and ibcntl variables, 3-7
ibconfig function

changing cable length, 7-3
determining assertion of EOI line, 7-2
enabling autopolling, 7-13
enabling high-speed data transfers,

7-2 to 7-3
ibdev function

opening devices, 3-8
using in Interactive Control utility

(example), 6-2
ibeos function, 7-1
ibeot function, 7-1
iberr error variable, 3-7
ibnotify function

asynchronous event notification example,
7-5 to 7-9

calling, 7-4 to 7-5

Index

NI-488.2 User Manual for Windows I-6 ni.com

ibonl function
placing device offline, 3-9, 3-12
using in Interactive Control utility

(example), 6-3 to 6-4
ibppc function, 7-17 to 7-18
ibrd function

reading response from device, 3-9
using in Interactive Control utility

(example), 6-3
ibrpp function, 7-18
ibrsp function

automatic serial polling, 7-13
SRQ and serial polling, 7-14

ibsta. See status word (ibsta).
ibwait function

Talker/Listener applications, 7-11
terminating stuck SRQ state, 7-13
waiting for GPIB conditions, 7-4

ibwrt function
sending *IDN? query to device, 3-9
using in Interactive Control utility

(example), 6-3
IFC (interface clear) line, A-3
instruments. See communicating with

instruments; GPIB instruments.
Interactive Control utility

auxiliary functions (table), 6-9 to 6-10
communicating with

instruments, 3-2 to 3-3
count, 6-11
error information, 6-10 to 6-11
getting started, 6-1 to 6-4
NI-488 function examples, 6-2 to 6-4
overview, 6-1
programming considerations, 3-2 to 3-3
status word, 6-10
syntax, 6-4 to 6-10

addresses, 6-5
board-level traditional NI-488.2 calls

(table), 6-7 to 6-8

device-level traditional NI-488.2
calls (table), 6-5 to 6-6

multi-device NI-488.2 calls (table),
6-8 to 6-9

numbers, 6-4
strings, 6-4 to 6-5

interface management lines, A-3
interrupts

autopolling and interrupts, 7-14
enabling in Windows Me/98/95,

D-4 to D-5

L
LACS status word condition

bit position, hex value, and type
(table), 3-6

description, B-5
Talker/Listener applications, 7-12

language interfaces, 3-3
listen address, A-2
Listeners, A-1. See also Talker/Listener

applications.
LOK status word condition

bit position, hex value, and type
(table), 3-6

description, B-3

M
manual. See documentation.
Measurement & Automation Explorer,

2-1 to 2-16
accessing additional help and

resources, 2-14
National Instruments GPIB Web

site, 2-14
NI-488.2 online help, 2-14

adding new GPIB interface, 2-4 to 2-5

Index

© National Instruments Corporation I-7 NI-488.2 User Manual for Windows

changing GPIB device
templates, 2-12 to 2-13

Windows Me/98/95, 2-12
Windows 2000/NT, 2-12

communicating with instrument,
2-6 to 2-8

deleting GPIB interface, 2-5
enabling/disabling NI-488.2 DOS

support, 2-13 to 2-14
Windows Me/98/95, 2-13
Windows 2000/NT, 2-13 to 2-14

getting started, 2-2 to 2-3
monitoring, recording, and displaying

NI-488.2 calls, 2-8 to 2-9
overview, 2-1
scanning for GPIB instruments, 2-5 to 2-6
starting, 2-2
troubleshooting NI-488.2 problems, 2-4
viewing GPIB instrument information,

2-11 to 2-12
viewing NI-488.2 software version, 2-8
viewing or changing GPIB-ENET

network settings, 2-15 to 2-16
assigning IP address, 2-15
configuring advance IP settings, 2-15
updating GPIB-ENET

firmware, 2-16
viewing or changing GPIB-ENET/100

network settings, 2-16 to 2-17
configuring network

parameters, 2-16
updating GPIB-ENET/100

firmware, 2-17
viewing or changing GPIB interface

settings, 2-9 to 2-11
Windows Me/98/95, 2-9 to 2-10
Windows 2000/NT, 2-10 to 2-11

Message Available (MAV) bit, 7-12
messages, sending across GPIB, A-2 to A-3

data lines, A-2
handshake lines, A-3

interface management lines, A-3
Microsoft Visual Basic programming

instructions, 3-13
Microsoft Visual C/C++ programming

instructions, 3-12
Microsoft Windows. See Windows Me/98/95;

Windows 2000/NT.
multi-device NI-488.2 calls. See

NI-488.2 calls.
multiple interfaces or multiple devices, 3-5
multithreaded Win32 GPIB applications,

writing, 7-9 to 7-10

N
n * ! (execute previous function n times)

function, Interactive Control utility, 6-10
n * (execute function n times) function,

Interactive Control utility, 6-10
National Instruments Web support, F-1
NDAC (not data accepted) line (table), A-3
NI Developer Zone, F-1
NI-488.2 calls

device-level calls and bus
management, 7-11

examples in Interactive Control
utility, 6-1 to 6-4

Interactive Control utility syntax
board-level calls (table), 6-7 to 6-8
device-level traditional calls

(table), 6-5 to 6-6
multi-device calls (table), 6-8 to 6-9

monitoring, recording, and displaying,
2-8 to 2-9

parallel polling
device-level traditional calls,

7-18 to 7-19
multi-device calls, 7-19
traditional device-level calls,

7-17 to 7-18

Index

NI-488.2 User Manual for Windows I-8 ni.com

SRQ and serial polling
device-level traditional calls,

7-14 to 7-15
examples, 7-16 to 7-17
multi-device calls, 7-15

NI-488.2 Communicator, 3-1
NI-488.2 DLL

choosing access method, 3-3
direct entry access, 3-3
NI-488.2 language interfaces, 3-3

NI-488.2 DOS support. See DOS NI-488.2
applications.

NI-488.2 programming techniques. See also
application development.

asynchronous event notification in Win32
applications, 7-4 to 7-9

calling ibnotify function, 7-4 to 7-5
ibnotify programming example,

7-5 to 7-9
device-level calls and bus

management, 7-11
high-speed data transfers, 7-2 to 7-3

enabling HS488, 7-2 to 7-3
system configuration effects, 7-3

parallel polling, 7-17 to 7-19
implementing, 7-17 to 7-18
multi-device NI-488.2 calls, 7-19
traditional NI-488.2 calls,

7-17 to 7-18
serial polling, 7-12 to 7-17

automatic serial polling, 7-13 to 7-14

autopolling and interrupts, 7-14
stuck SRQ state, 7-13

service requests
from IEEE 488 devices, 7-12

from IEEE 488.2 devices, 7-12
SRQ and serial polling

with device-level traditional
NI-488.2 calls, 7-14 to 7-15

with multi-device NI-488.2
calls, 7-15 to 7-17

Talker/Listener applications, 7-11 to 7-12
termination of data transfers, 7-1 to 7-2
waiting for GPIB conditions, 7-4
writing multithread Win32 GPIB

applications, 7-9 to 7-10
NI-488.2 software

language interfaces, 3-3
viewing version, 2-8

NI Spy utility
debugging applications, 4-1
exiting, 5-3
locating errors, 5-2
online help, 5-2
overview, 5-1
performance considerations, 5-3
starting, 5-1 to 5-2
viewing properties for recorded calls, 5-2

NRFD (not ready for data) line (table), A-3
number syntax, in Interactive Control

utility, 6-4

O
online help

accessing, xi
NI-488.2 online help, 2-14
NI Spy online help, 5-2

P
parallel polling, 7-17 to 7-19

implementing, 7-17 to 7-19
using NI-488.2 calls, 7-17 to 7-19

multi-device, 7-19
traditional, 7-17 to 7-18

PPoll routine, 7-19
PPollConfig routine, 7-19
PPollUnconfig routine, 7-19
primary GPIB address, A-2
problem solving. See debugging;

troubleshooting and common questions.

Index

© National Instruments Corporation I-9 NI-488.2 User Manual for Windows

programming. See application development;
debugging; NI-488.2 programming
techniques.

Q
q function, Interactive Control utility, 6-10

R
ReadStatusByte routine, 7-15
Receive function, 3-12
REM status word condition

bit position, hex value, and type
(table), 3-6

description, B-4
REN (remote enable) line (table), A-3
repeat addressing, 4-5
repeat previous function (!) function,

Interactive Control utility, 6-9
requesting service. See service requests.
RQS status word condition

bit position, hex value, and type
(table), 3-6

description, B-3
running existing applications. See existing

applications, running.

S
secondary GPIB address, A-2
SendIFC routine, 3-10
SendList function, 3-12
serial polling, 7-12 to 7-17

application example using NI-488.2
routines, 7-16 to 7-17

automatic serial polling, 7-13 to 7-14
autopolling and interrupts, 7-14
stuck SRQ state, 7-13

service requests
from IEEE 488 devices, 7-12

from IEEE 488.2 devices, 7-12
SRQ and serial polling

device-level traditional NI-488.2
calls, 7-14 to 7-15

multi-device NI-488.2 calls,
7-15 to 7-17

service requests
serial polling

IEEE 488 devices, 7-12
IEEE 488.2 devices, 7-12

stuck SRQ state, 7-13
set 488.2 v function, Interactive Control

utility, 6-9
set udname function, Interactive Control

utility, 6-9
setting up your system. See configuration.
SRQ (service request) line

purpose (table), A-3
serial polling

automatic serial polling, 7-13 to 7-14
using device-level traditional

NI-488.2 calls, 7-14 to 7-15
using multi-device NI-488.2 calls,

7-15 to 7-17
stuck SRQ state, 7-13

SRQI status word condition
bit position, hex value, and type

(table), 3-6
description, B-3

status word (ibsta), 3-5 to 3-7
ATN, B-4
CIC, B-4
CMPL, B-3
DCAS, 7-12, B-5
DTAS, 7-12, B-5
END, B-2
ERR, B-2
Interactive Control utility example, 6-10
LACS, 7-12, B-5
LOK, B-3
programming considerations, 3-5 to 3-7

Index

NI-488.2 User Manual for Windows I-10 ni.com

REM, B-4
RQS, B-3
SRQI, B-3
status word layout (table), 3-6, B-1
TACS, 7-12, B-4
TIMO, B-2

string syntax, in Interactive Control
utility, 6-4 to 6-5

stuck SRQ state, 7-13
System Controller, A-1
system integration, by National

Instruments, F-1

T
TACS status word condition

bit position, hex value, and type
(table), 3-6

description, B-4
Talker/Listener applications, 7-12

talk address, A-2
Talker/Listener applications, 7-11 to 7-12
Talkers, A-1
technical support resources, F-1
termination methods, errors caused by, 4-5
termination of data transfers, 7-1 to 7-2
TestSRQ routine, 7-15
timing errors, 4-4
TIMO status word condition

bit position, hex value, and type
(table), 3-6

description, B-2
troubleshooting and common questions. See

also debugging; NI Spy utility.
using Measurement & Automation

Explorer, 2-4
Windows Me/98/95, D-1 to D-8

common questions, D-5 to D-8
Device Manager device status

code, D-3
EDVR error conditions, D-1 to D-2

enabling interrupts, D-4 to D-5
Windows 2000/NT, E-1 to E-3

turn OFF display (-) function, Interactive
Control utility, 6-9

turn ON display (+) function, Interactive
Control utility, 6-10

V
Visual Basic programming instructions, 3-12

W
WaitSRQ routine, 7-15
Web support from National Instruments, F-1
Win32 and Win16 NI-488.2 applications

asynchronous event notification,
7-4 to 7-9

running, 3-17
running existing applications, 3-17
writing multithreaded applications,

7-9 to 7-10
Windows Me/98/95

autopolling and interrupts, 7-14
changing GPIB device templates, 2-12
enabling/disabling NI-488.2 DOS

support, 2-13 to 2-14
running existing DOS NI-488.2

applications, 3-17
troubleshooting and common questions,

D-1 to D-8
common questions, D-5 to D-8
Device Manager device status

code, D-3
EDVR error conditions, D-1 to D-2
enabling interrupts, D-4 to D-5

viewing or changing settings
GPIB-ENET network, 2-15 to 2-16
GPIB-ENET/100 network,

2-16 to 2-17
GPIB interface, 2-9 to 2-10

Index

© National Instruments Corporation I-11 NI-488.2 User Manual for Windows

Windows 2000/NT
autopolling and interrupts, 7-14
changing GPIB device templates, 2-13
enabling/disabling NI-488.2 DOS

support, 2-13 to 2-14
running existing DOS NI-488.2

applications, 3-18
troubleshooting and common questions,

E-1 to E-3
viewing or changing GPIB interface

settings, 2-10 to 2-11
Worldwide technical support, F-2

	NI-488.2 User Manual for Windows
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Using�the NI-488.2 Documentation
	Accessing the NI-488.2 Online Help

	Conventions
	Related Documentation

	Chapter 1 Introduction
	Setting up and Configuring Your System
	Controlling More Than One Interface
	Configuration Requirements

	Chapter 2 Measurement & Automation Explorer
	Overview
	Starting Measurement & Automation Explorer
	Getting Started with NI-488.2
	Troubleshoot NI-488.2 Problems
	Add a New GPIB Interface
	Delete a GPIB Interface
	Scan for GPIB Instruments
	Instruments Not Found
	Instruments Enumeration Failed

	Communicate with Your Instrument
	Basic Communication (Query/Write/Read)
	Advanced Communication

	View NI-488.2 Software Version
	Monitor, Record, and Display NI-488.2 Calls
	View or Change GPIB Interface Settings
	Windows�Me/98/95
	Windows�2000/NT

	View GPIB Instrument Information
	Change GPIB Device Templates
	Windows�Me/98/95
	Windows�2000/NT

	Enable/Disable NI-488.2 DOS Support
	Windows�Me/98/95
	Windows�2000/NT

	Access Additional Help and Resources
	NI-488.2 Online Help
	National Instruments GPIB Web Site

	View or Change GPIB-ENET Network Settings (Windows�Me/98/95 Only)
	Assign IP Address
	Configure Advanced IP Settings
	Update GPIB-ENET Firmware

	View or Change GPIB-ENET/100 Network Settings (Windows�Me/98/95 Only)
	Device Configuration
	Update GPIB-ENET/100 Firmware

	Chapter 3 Developing Your NI-488.2 Application
	Simple Instrument Control
	Interactive Instrument Control
	Choosing Your Programming Methodology
	Choosing a Method to Access the NI-488.2 Driver
	NI-488.2 Language Interfaces
	Direct Entry Access

	Choosing How to Use the NI-488.2 API
	Communicating with a Single GPIB Device
	Using Multiple Interfaces and/or Multiple Devices

	Checking Status with Global Variables
	Status Word (ibsta)
	Error Variable (iberr)
	Count Variables (ibcnt and ibcntl)

	Using Interactive Control to Communicate with�Devices
	Programming Models
	Applications That Communicate with a Single GPIB Device
	Items to Include
	General Program Steps and Examples

	Applications That Use Multiple Interfaces or Communicate with Multiple�GPIB Devices
	Items to Include
	General Program Steps and Examples

	Language-Specific Programming Instructions
	Microsoft Visual C/C++ (Version 2.0 or Later)
	Borland C/C++ (Version 4.0 or Later)
	Visual Basic (Version 4.0 or Later)
	Direct Entry with C
	gpib-32.dll Exports
	Directly Accessing the gpib-32.dll Exports

	Running Existing NI-488.2 Applications
	Running Existing Win32 and Win16 NI-488.2 Applications
	Running Existing DOS NI-488.2 Applications Under Windows�Me/98/95
	Running Existing DOS NI-488.2 Applications under Windows�2000/NT

	Chapter 4 Debugging Your Application
	NI Spy
	Global Status Variables
	Existing Applications
	NI-488.2 Error Codes
	Configuration Errors
	Timing Errors
	Communication Errors
	Repeat Addressing
	Termination Method

	Other Errors

	Chapter 5 NI Spy Utility
	Overview
	Starting NI Spy
	Using the NI Spy Online Help
	Locating Errors with NI Spy
	Viewing Properties for Recorded Calls
	Exiting NI Spy
	Performance Considerations

	Chapter 6 Interactive Control Utility
	Overview
	Getting Started with Interactive Control
	Interactive Control Syntax
	Number Syntax
	String Syntax
	Address Syntax

	Interactive Control Commands
	Status Word
	Error Information
	Count Information

	Chapter 7 NI-488.2 Programming Techniques
	Termination of Data Transfers
	High-Speed Data Transfers (HS488)
	Enabling HS488
	System Configuration Effects on HS488

	Waiting for GPIB Conditions
	Asynchronous Event Notification in Win32 NI-488.2�Applications
	Calling the ibnotify Function
	ibnotify Programming Example

	Writing Multithreaded Win32 NI-488.2 Applications
	Device-Level Calls and Bus Management
	Talker/Listener Applications
	Serial Polling
	Service Requests from IEEE 488 Devices
	Service Requests from IEEE 488.2 Devices
	Automatic Serial Polling
	Stuck SRQ State
	Autopolling and Interrupts

	SRQ and Serial Polling with Device-Level Traditional NI-488.2 Calls
	SRQ and Serial Polling with Multi-Device NI-488.2 Calls
	Example 1: Using FindRQS
	Example 2: Using AllSpoll

	Parallel Polling
	Implementing a Parallel Poll
	Parallel Polling with Traditional NI-488.2 Calls
	Parallel Polling with Multi-Device NI-488.2 Calls

	Appendix A GPIB Basics
	Talkers, Listeners, and Controllers
	Controller-In-Charge and System Controller
	GPIB Addressing
	Sending Messages across the GPIB
	Data Lines
	Handshake Lines
	Interface Management Lines

	Appendix B Status Word Conditions
	ERR (dev, brd)
	TIMO (dev, brd)
	END (dev, brd)
	SRQI (brd)
	RQS (dev)
	CMPL (dev, brd)
	LOK (brd)
	REM (brd)
	CIC (brd)
	ATN (brd)
	TACS (brd)
	LACS (brd)
	DTAS (brd)
	DCAS (brd)

	Appendix C Error Codes and Solutions
	EDVR (0)
	Solutions

	ECIC (1)
	Solutions

	ENOL (2)
	Solutions

	EADR (3)
	Solutions

	EARG (4)
	Solutions

	ESAC (5)
	Solutions

	EABO (6)
	Solutions

	ENEB (7)
	Solutions

	EDMA (8)
	Solutions

	EOIP (10)
	Solutions

	ECAP (11)
	Solutions

	EFSO (12)
	Solutions

	EBUS (14)
	Solutions

	ESTB (15)
	Solutions

	ESRQ (16)
	Solutions

	ETAB (20)
	Solutions

	Appendix D Windows Me/98/95: Troubleshooting and Common Questions
	Troubleshooting EDVR Error Conditions
	EDVR Error Condition with ibcntl Set to 0xE028002C (–534249428)
	EDVR Error Condition with ibcntl Set to 0xE0140025 (–535560155)
	EDVR Error Condition with ibcntl Set to 0xE0140035 (–535560139)
	EDVR Error Condition with ibcntl Set to 0xE0320029 (–533594071) or 0xE1050029 (–519765975)
	EDVR Error Condition with ibcntl Set to 0xE0140004 (–535560188)
	EDVR Error Condition with ibcntl set to 0xE1030043 (–519897021)

	Troubleshooting Device Manager Problems
	Enabling Interrupts
	Step 1. Free up an Interrupt Resource
	Step 2. Remove Your GPIB Interface from the Device Manager
	Step 3. Refresh the Device Manager or Reinstall Your GPIB interface

	Common Questions

	Appendix E Windows 2000/NT: Common Questions
	Common Questions

	Appendix F Technical Support Resources
	Glossary
	A-B
	C-E
	F-H
	I
	L-M
	N-R
	S
	T-U

	Index
	Numbers/Symbols
	A
	B-C
	D-E
	F-G
	H-I
	L-M
	N
	O-P
	Q-S
	T-W

	Figures
	Figure 1-1. Linear and Star System Configuration
	Figure 1-2. Example of Multiboard System Configuration
	Figure 2-1. Measurement & Automation Explorer
	Figure 2-2. Viewing Documentation on Your CD
	Figure 2-3. NI-488.2 Troubleshooting Wizard
	Figure 2-4. NI-488.2 Communicator
	Figure 2-5. NI-488.2 Calls Recorded by NI Spy
	Figure 2-6. Properties Dialog Box in Windows Me/98/95
	Figure 2-7. GPIB Configuration Utility in Windows NT
	Figure 3-1. NI-488.2 Communicator
	Figure 4-1. NI-488.2 Calls Recorded by NI Spy
	Figure 5-1. NI-488.2 Calls Recorded by NI Spy
	Figure 6-1. Instrument Address in Measurement & Automation Explorer
	Figure A-1. GPIB Address Bits

	Tables
	Table 3-1. Status Word Layout
	Table 6-1. Syntax for Device-Level Traditional NI-488.2 Calls in Interactive Control
	Table 6-2. Syntax for Board-Level Traditional NI-488.2 Calls in Interactive Control
	Table 6-3. Syntax for Multi-Device NI-488.2 Calls in Interactive Control
	Table 6-4. Auxiliary Functions in Interactive Control
	Table A-1. GPIB Handshake Lines
	Table A-2. GPIB Interface Management Lines
	Table B-1. Status Word Layout
	Table C-1. GPIB Error Codes
	Table D-1. Device Manager Status Codes

